期刊文献+

Highly efficient continuous-wave laser operation of laser diode-pumped Nd,Y:CaF_2 crystals 被引量:1

Highly efficient continuous-wave laser operation of laser diode-pumped Nd,Y:CaF_2 crystals
原文传递
导出
摘要 The effect of co-doping Y3+ and the doping concentration of Nd3+ on the spectroscopic properties and laser performance of Nd:CaF2 crystals are investigated systematically. For a 0.5% Nd:CaF2 crystal, the emission life- time at 1.06 μm increases from 18 to 361 μs by co-doping 10 at.% Y3+, while the emission cross section increases to 4.27 × 10^-20 cm2 at 1054 nm. With a 10 at.% doping concentration of Y3+, Nd, Y:CaF2 crystals concentrate emission bands that peak at 1054 nm with shoulders at 1063 nm, and FWHM at about 30 nm. A diode-pumped, highly efficient laser operation is obtained with 0.5% Nd, 1070 Y:CaF2 and 0.6% Nd, 1070 Y:CaF2 crystals, with slope efficiencies over 30% and 27%, respectively, and a maximum output power up to 901 mW. The effect of co-doping Y3+ and the doping concentration of Nd3+ on the spectroscopic properties and laser performance of Nd:CaF2 crystals are investigated systematically. For a 0.5% Nd:CaF2 crystal, the emission life- time at 1.06 μm increases from 18 to 361 μs by co-doping 10 at.% Y3+, while the emission cross section increases to 4.27 × 10^-20 cm2 at 1054 nm. With a 10 at.% doping concentration of Y3+, Nd, Y:CaF2 crystals concentrate emission bands that peak at 1054 nm with shoulders at 1063 nm, and FWHM at about 30 nm. A diode-pumped, highly efficient laser operation is obtained with 0.5% Nd, 1070 Y:CaF2 and 0.6% Nd, 1070 Y:CaF2 crystals, with slope efficiencies over 30% and 27%, respectively, and a maximum output power up to 901 mW.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第7期69-72,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.61178056,61422511,and 51432007
关键词 Continuous wave lasers Doping (additives) Q switched lasers Continuous wave lasers Doping (additives) Q switched lasers
  • 相关文献

参考文献16

  • 1W.Kaiser, C.G.B.Garrett, and D.L.Wood, Phys.Rev.123, 766 (1961).
  • 2P.P.Sorokin and M.J.Stevenson, Phys.Rev.Lett.5, 557 (1960).
  • 3S.A.Payne, J.A.Caird, L.L.Chase, L.K.Smith, N.D.Nielsen, and W.F.Krupke, J.Opt.Soc.Am.B 8, 726 (1991).
  • 4T.P.J.Han, G.D.Jones, and R.W.G.Syme, Phys.Rev.47, 14706 (1993).
  • 5N.E.Kask and L.S.Kornienko, Sov.Phys.JETP.26, 331 (1968).
  • 6A.A.Kaminskii, V.V.Osiko, A.M.Prochoro, and Yu.K.Voronko, Phys.Lett.22, 419 (1966).
  • 7K.S.Bagdasarov, Y.K.Voronko, A.A.Kaminskii, L.V.Krotova, and V.V.Osiko, Phys.Stat.Sol.12, 905 (1965).
  • 8T.T.Basiev, Y.K.Voronko, A.Y.Karasik, V.V.Osiko, and I.A.Shcherbakov, Zh.Eksp.Teor.Fiz.75, 66 (1978).
  • 9J.Guo, J.Li, P.Gao, L.Su, J.Xu, and X.Liang, Chin.Opt.Lett.12, 121403 (2014).
  • 10S.Sun, L.Su, Y.Yuan, and Z.Sun, Chin.Opt.Lett.11, 112301 (2013).

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部