期刊文献+

一种简单精准的渐变折射率分布光波导分析方法

A simple and exact method to analyze optical waveguide with graded index profile
下载PDF
导出
摘要 渐变折射率分布的光波导分析对光波导器件的设计和研究至关重要,近年来已提出了多种分析方法,然而在简便性或准确性上都存在着不足.为此,提出了一种分析渐变折射率分布光波导的方法,能够结合现有的Wentzel-Kramers-Brillouin近似法和离散化的波动方程,构建模场分布,再结合变分运算方程和修正的模式本征方程,计算出较为精确的有效折射率.与其他分析方法相比,该方法较为简单,而且有一定的精度. A simple analytical method is proposed to obtain the exact propagation constants and distributions of electric field intensity of optical waveguides with graded refractive index profile. The method is based on the Wenzel-Kramers- Brillouin (WKB) solution, variational method, modified eigen-equations and discretized scalar wave equation for planar optical waveguide. The expressions of the distribution of electric field intensity based on the conventional WKB method, which diverge around the turning point, have been demonstrated to be very exact in the region beyond the turning point where the refractive index profile varies slowly. The proposed method uses the conventional WKB method to calculate the values of electric field intensity at two adjacent positions beyond the turning point and then the electric field intensity profile for the whole region is obtained by making use of the two calculated values. Two simple and explicit formulas are deduced from the discretized scalar wave equation, which provide a relationship among the values of electric field intensity at three adjacent positions. If the effective refractive index of optical waveguide and the refractive index profile for the whole region are known, we can obtain the value of electric field intensity at any position according to the corresponding values at the adjacent positions by using the two formulas aforementioned. By using the two values calculated by WKB method, the electric field intensity profile for the whole region can be determined through the iterative use of the two formulas. The accuracy of the electric field intensity profile determined by the proposed method is greatly dependent on the accuracy of the applied value of the effective refractive index. To achieve exact propagation constants and distributions of electric field intensity, the variational method and modified eigen-equations are employed in the proposed method. Variational method is a very useful method to improve the accuracy of the propagation constants in the analysis of optical waveguides with step-asymmetrical graded refractive index profile. By combining the traditional variational method and calculation of electric field intensity profile by the proposed method, the improved variational method is presented to obtain the exact propagation constants of optical waveguides. The value of propagation constant calculated by WKB method and the corresponding electric intensity field profile determined by the proposed method are chosen as the initial trial value and trial function in the variational method. Propagation constant and the corresponding electric field intensity profile with better accuracy can be achieved by the variational calculation and then are regarded as the new trial value and trial function. By the iterative use of the variational method and calculation of electric field intensity profile by the proposed method at finite times, quite accurate results are obtained. The modified eigen-equations in combination with the proposed method is another approach to calculating accurate propagation constants of optical waveguides with both the step-asymmetrical and symmetrical graded index profile. In comparison with other published methods, the proposed method has the advantages of the simplicity and considerable accuracy.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第14期169-175,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61177054)资助的课题~~
关键词 渐变折射率分布 光波导 Wentzel—Kramers—Brillouin近似法 变分法 graded refractive index profile, optical waveguides, Wentzel-Kramers-Brillouin method,variational method
  • 相关文献

参考文献28

  • 1Howerton M M, Moeller R P, Greenblatt A S, Krahenbuhl R 2000 IEEE Photon. Technol. Lett. 12 792.
  • 2薛挺,于建,杨天新,倪文俊,李世忱.周期性极化铌酸锂波导全光开关特性分析[J].物理学报,2002,51(7):1521-1529. 被引量:7
  • 3汪大林,孙军强,王健.基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换[J].物理学报,2008,57(1):252-259. 被引量:6
  • 4魏正军, 万伟, 王金东, 廖常俊, 刘颂豪 2011 物理学报 60 094217.
  • 5Camy P, Román J E, Willems F W, Hempstead M, van der Plaats J C, Prel C, Béguin A, Koonen A M J, Wilkinson J S, Lerminiaux C 1996 IEEE Electron. Lett. 32 321.
  • 6Koshiba M, Suzuki M 1982 \textit IEEE Electron. Lett. 18 579.
  • 7Lagu R, Ramaswamy R 1986 IEEE J. Quantum Electron. 22 968.
  • 8Shao G W, Jin G L 2009 Chin. Phys. B 18 1096.
  • 9Goyal I C, Gallawa R L, Ghatak A K 1991 Opt. Lett. 16 30.
  • 10Goyal I C, Jindal R, Ghatak A K 1997 IEEE J. Lightwave Technol. 15 2179.

二级参考文献27

  • 1陈云琳,袁建伟,闫卫国,周斌斌,罗勇锋,郭娟.准相位匹配PPLN倍频理论研究与优化设计[J].物理学报,2005,54(5):2079-2083. 被引量:15
  • 2王健,孙军强,郭永娟,李婧,孙琪真.新型双环腔结构可调谐全光波长转换器的实验研究[J].物理学报,2007,56(6):3251-3254. 被引量:1
  • 3[1]Kanbara H et al 1999 IEEE Photon. Technol. Lett. 11 328
  • 4[2]Parameswaran K R et al 2000 IEEE Photon. Technol. Lett. 12 654
  • 5[3]Asobe M et al 1997 Opt. Lett. 2 274
  • 6[4]Hutchings D C et al 1993 Opt. Lett. 18 793
  • 7[5]Stegeman G I et al 1993 Opt. Lett. 18 13
  • 8[6]Xue T et al 2002 Acta Phys.Sin. 51 565 (in Chinese)[薛挺等 2002 物理学报51 565]
  • 9[7]Xue T et al 2002 Acta Phys.Sin. 51 91 (in Chinese) [薛挺等 2002 物理学报51 91]
  • 10Notre D, Park E, Winner A E 1995 IEEE Photon. Technol. Lett. 7 902.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部