期刊文献+

低密等离子体通道中的非共振激光直接加速

Non-resonant direct laser acceleration in underdense plasma channels
下载PDF
导出
摘要 在低密等离子体通道中,横向有质动力可以有效调制电子的横向振荡过程.一方面,横向有质动力可以向外推动电子,增大电子横向振荡振幅,减小失相率,使电子获得能量增益;另一方面,横向有质动力也可以通过对失相率的非线性调制来降低失相率,在电子横向振荡振幅很小的情况下导致激光直接加速.横向有质动力调制的大小由等离子体密度、激光强度和束宽共同决定.三维模型结果也证实可以通过参数放大实现激光直接加速,弥补了准二维模型的局限性. Mechanisms that electrons are directly accelerated by the laser-plasma interaction in non-resonant cases are studied. First, by use of a linearly polarized Gaussian laser beam, a three-dimensional model is presented to demonstrate that the frequency and the amplitude of electron oscillations can be significantly modulated by the transverse ponderomotive force, within the confinement of an underdense plasma channel. On the one hand, the transverse ponderomotive force can felicitously make electrons to experience the large amplitude oscillations and push them to the regions at a low dephasing rate. On the other hand, when the electrons oscillate across the channel with small amplitudes, the dephasing rate also can be effectively reduced by the nonlinear modulation arising from the transverse ponderomotive force. These kinds of modulations can lead electrons to stay in phase with the laser field for a longer time and thus enhance their energy gain, which also enables the mechanism of transverse ponderomotive modulation being in direct laser acceleration. This mechanism is determined by the plasma density and the laser intensity and radius. Detailed numerical results are also given which show that the electron acceleration induced by this ponderomotive modulation quite distinguishes from the parametric instability and the resonance from a driving force. Moreover, a theoretical model for the parametric amplification, which makes up the restriction of the quasi-two-dimensional model, is provided to verify that non-resonant direct laser acceleration can come from the parametric instability in the three-dimensional case.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第14期208-215,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11104068) 强场激光物理国家重点实验室开放基金资助课题~~
关键词 等离子体 激光直接加速 横向有质动力调制 参数放大 plasma, direct laser acceleration, transverse ponderomotive modulation, parametric amplifi-cation
  • 相关文献

参考文献15

  • 1Bulanov S, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K, Maksimchuk A 2008 Med. Phys. 35 1770.
  • 2Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D, Zhou M 2007 Nature 445 741.
  • 3Nakajima K 2008 Nature Phys. 4 92.
  • 4Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104.
  • 5Leemans W P, Nagler B, Gonsalves A J, Toth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696.
  • 6Lu H Y, Liu M W, Wang W T, Wang C, Liu J S, Deng A H, Xu J C, Xia C Q, Li W T, Zhang H, Lu X M, Wang C, Wang J Z, Liang X Y, Len Y X, Shen B F, Nakajima K, Li R X, Xu Z Z 2011 Appl. Phys. Lett. 99 091502.
  • 7张国博,邹德滨,马燕云,卓红斌,邵福球,杨晓虎,葛哲屹,银燕,余同普,田成林,甘龙飞,欧阳建明,赵娜.激光脉冲形状对弓形波电子俘获的影响[J].物理学报,2013,62(20):322-327. 被引量:1
  • 8张国博,马燕云,邹德滨,卓红斌,邵福球,杨晓虎,葛哲屹,余同普,田成林,欧阳建明,赵娜.激光脉冲的横向波形对弓形波电子俘获的影响[J].物理学报,2013,62(12):388-392. 被引量:1
  • 9Fuchs J, Cecchetti C A, Borghesi M, Grismayer T, d’Humières E, Antici P, Atzeni S, Mora P, Pipahl A, Romagnani L, Schiavi A, Sentoku Y, Toncian T, Audebert P, Willi O 2007 Phys. Rev. Lett. 99 015002.
  • 10刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201.

二级参考文献40

  • 1Malka V 2012 Phys. Plasmas 19 055501.
  • 2Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229.
  • 3Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696.
  • 4Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626.
  • 5Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702.
  • 6Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542.
  • 7van Tilborg J, Schroeder C B, Filip C V, T6th C, Geddes C G R, Fu- biani G, Huber R, Kaindl R A, Esarey E, Leemans W P 2006 Phys. Rev. Lett. 96 014801.
  • 8Esarey E, Shadwick B A, Catravas P, Leernans W P 2002 Phys. Rev. E 65 056505.
  • 9Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kise- lev S, Burgy F, Rousseau J P, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005.
  • 10Ge Z Y, Yin Y, Li S X, Yu M Y, Yu T P, Xu H, Zhuo H B, Ma Y Y, Shao F Q, Tian C L 2012 New J. Phys. 14 103015.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部