期刊文献+

基于介质环形柱结构的二维光子晶体中Dirac点的实现 被引量:2

Photonic Dirac point realized in two dimensional annular photonic crystals
下载PDF
导出
摘要 利用偶然简并方法在二维正方格子介质环形柱结构光子晶体中成功实现了Dirac点,并利用平面波展开法对实现Dirac点的过程进行了研究.研究结果表明,对于二维正方格子介质环形柱结构光子晶体,在一定的外径RO范围内(0.37a<RO<0.5a),当Dirac点存在时(n>1.4),介质环内径RI与外径RO满足一个不随介质环折射率n变化的恒定关系式.同时,Dirac点对应的光子约化频率f随折射率n及外径RO的增大而减小.利用所得的关系式对特定介质环折射率n条件下能实现Dirac点的环形光子晶体进行了预判设计. The Dirac cones in photonic crystals have aroused much interest in the last few years. Annular photonic crystals have also been well studied for designing and controlling the band gap because they have more parameters than usual photonic crystal. In this paper, we study a two-dimensional square lattice dielectric annular photonic crystal to explore the formation of the photonic Dirac cone by the accidental degeneracy method. The theoretical tool is the plane wave expansion method. The results show that this system can provide a Dirac point in the center of the Brillouinozone in the photonic band if both the outer radius and the inner radius of each scatterer are chosen to be appreciate values when the dielectric refractive index of the annular rod is fixed. For example, there is a Dirac point at the photonic normalized frequency f = 0.438(c/a) when n = 3.4, Ro = 0.42a, R1 = 0.305a, where f is the frequency, c is the light speed in vacuum, a is the lattice constant, n is the refractive index, Ro is the outer radius, and R1 is the inner radius. It is also found that within a confined region of outer radius Ro(0.37a 〈 Ro 〈 0.5a), when a Dirac point is realized in the annular photonic crystal (n 〉 1.4), the inner radius RI and the outer radius Ro obey a relation of RI = -1.104 + 8.167Ro + (-11.439)R2O), which is unrelated to the refractive index n of the dielectric annular rod. If n is less than 1.4, this rule is not valid. At the same time, the normalized frequency at which the Dirac point is realized, decreases with increasing both refractive index n and outer radius Ro. Especially, the curves of the relation between photonic frequency f and outer radius Ro almost do not change their profiles but only be shifted up and down with changing the refractive index n. Based on this, we also design and predict the annular photonic crystal which provides a Dirac point. The goal is to obtain the other relative parameters (frequency f, outer radius Ro and the inner radius RI) of the photonic crystal system if the refractive index n is fixed. The values of the prediction agree very well with the values obtained by the rigid theoretical calculation within a relative error of only 4%.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第14期320-328,共9页 Acta Physica Sinica
基金 中国矿业大学中央高校基本科研业务费专项基金(批准号:2013QNA40)资助的课题~~
关键词 环形柱结构光子晶体 Dirac点 平面波展开法 偶然简并 annular photonic crystals, the Dirac point, plane wave expansion method, accidentaldegeneracy
  • 相关文献

参考文献19

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666.
  • 2Geim A K, Novoselov K S 2007 Nat. Mater. 6 183.
  • 3Liu Y H, He L, Shi Y L 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 621.
  • 4Zhang X D 2008 Phys. Lett. A 372 3512.
  • 5Wang L G, Wang Z G, Zhang J X, Zhu S Y 2009 Opt. Lett. 34 1510.
  • 6Bittner S, Dietz B, Miski-Oglu M, Oria-Iriarte P, Richter A, Schafer F 2010 Phys. Rev. B 82 014301.
  • 7Katsnelson M I 2006 Eur. Phys. J. B 51 157.
  • 8Sepkhanov R A, Beenakker C W J 2008 Opt. Commun. 281 5267.
  • 9Guo H, Liu H G, Zhang X, Chen H J, Wang W X, Wang S K, Cui Y P 2013 Appl. Phys. Express 6 042003.
  • 10Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582.

同被引文献39

  • 1Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696) : 666-669.
  • 2Zhang Y B, Tan Y W, Stormer H L, et al.. Experimental observation of the quantum Hall effect and Berryrs phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
  • 3Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3) : 183-191.
  • 4Raghu S, Haldane F D M. Analogs of quantum-Hall effect edge states in photonic crystals [J]. Phys Rev A, 2008, 78 (3) : 033834.
  • 5Sepkhanov R A, Beenakker C W J. Numerical test of the theory of pseudo-diffusive transmission at photonic band structure[J]. Opt Commun, 2008, 281(20): 5267-5270.
  • 6Huang X Q, Lai Y, Hang Z H, et al.. Dirae cones induced by accidental degeneracy in photonic crystals and zero- refractive-indexmaterials[J]. Nat Mater, 2011, 10(8): 582-586.
  • 7Alu A, Silveirinha M G, Salandrino A, et al.. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern[J]. Phys RevB, 2007, 75(15): 155410.
  • 8Xu Y, Chen H. Total reflection and transmission by epsilon-near-zero metamaterials with defects[J]. Appl Phys Lett, 2011, 98(11): 113501.
  • 9Yablonovitch E 1987 Phys. Rev. Lett. 58 2059.
  • 10John S 1987 Phys. Rev. Lett. 58 2486.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部