期刊文献+

HIV衣壳蛋白P24与TRIM22在HEK293T细胞中的表达及共定位 被引量:2

Expressions and co-localization of HIV capsid protein p24 and TRIM22 in HEK293T cells
下载PDF
导出
摘要 目的观察人类免疫缺陷病毒(HIV)衣壳蛋白P24与三基序蛋白22(TRIM22)在HEK293T细胞中的共定位情况。方法以慢病毒载体p LP1为模板,通过PCR法扩增p24编码序列,克隆至p DsRed-Monomer-N1真核表达载体。经菌落PCR、双酶切及DNA测序进行鉴定。将p DsRed-Monomer-N1-p24与p EGFP-N3-TRIM22载体共同转染HEK293T细胞,用荧光显微镜观察p24-DsRed-Monomer和TRIM22-EGFP的表达及共定位情况。结果经菌落PCR、双酶切及测序鉴定,成功构建p DsRedMonomer-N1-p24真核表达载体。通过荧光显微镜检测发现,p24-DsRed-Monomer和TRIM22-EGFP在HEK293T细胞中存在共定位关系。结论 HIV衣壳蛋白P24与TRIM22存在共定位。 Objective To observe the co-localization of human immunodeficiency virus(HIV) capsid protein p24 and tripartite motif containing 22( TRIm^22) in HEK293 T cells. Methods The retroviral packaging vector p LP1 was used as the template of p24. After the amplification by PCR,the sequence of p24 was cloned into the eukaryotic expression vector p DsRed-Monomer-N1. The recombinant vector was confirmed by colony PCR,double restriction enzyme digestion and DNA sequencing. HEK293 T cells were co-transfected with the vector p DsRed-Monomer-N1-p24 together with p EGFP-N3-TRIM22.After 24 hours, the co-localization of p24-DsRed-Monomer and TRIM22-EGFP was detected under a fluorescence microscope. Results Colony PCR,double restriction enzyme digestion and DNA sequencing confirmed that the eukaryotic expression vector p DsRed-Monomer-N1-p24 was constructed successfully. Fluorescence microscope showed that p24-DsRed-Monomer was co-localized with TRIM22-EGFP in HEK293 T cells. Conclusion HIV capsid protein p24 is co-localized with TRIM22 in HEK293 T cells.
出处 《细胞与分子免疫学杂志》 CAS CSCD 北大核心 2015年第8期1081-1084,共4页 Chinese Journal of Cellular and Molecular Immunology
基金 山东省科技发展计划项目(2011YD18015) 山东省自然科学基金(ZR2012CM009) 山东省高等学校科技计划(J11LF89) 烟台市科技发展计划项目(2011078)
关键词 人类免疫缺陷病毒 衣壳蛋白 P24 TRIM22 共定位 human immunodeficiency virus capsid protein p24 tripartite motif containing 22 co-localization
  • 相关文献

参考文献25

  • 1Lahaye X, Mar~ N. Viral and cellular ~sms of the innate inmrme sensing of HIV[J]. Curr Opin Virol, 2015, llC: 55 -62.
  • 2Mariani C, Desdouits M, Favard C, et al. Role of Gag and lipids during HIV-1 assembly in CIM ~ T cells and macrophages [J/OL]. Front Micmbiol, 2014, 5: 312.
  • 3Maldonado JO, Martin JL, Mueller JD, et al. New insights into retroviral Gag-Gag and Gag-membrane interactions [ J/OL]. Front Microbiol, 2014, 5: 302.
  • 4Dick RA, Vogt VM. Membrane interaction of retroviral Gag proteins [J/OL]. Front Microbiol, 2014, 5: 187.
  • 5Kajaste-Rudnitski A, Marelli SS, Pultmne C, et al. TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements ~ J ]. J Virol, 2011,85(10): 5183-5196.
  • 6Ban" SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22 [ J/OA ]. PLoS Pathog, 2008, 4(2) : el000007.
  • 7Rajsbaum R, Gareia-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity [J]. J Mol Biol, 2014, 426(6) : 1265 -1284.
  • 8Yap MW, Stoye JP. TRIM proteins and the innate immune response to viruses[J]. Adv Exp Med Biol, 2012, 770:93 -104.
  • 9Turrini F, Di Pietro A, Vicenzi E. Lentiviral effector pathways of TRIM proteins[J]. DNA Cell Bid, 2014, 33(4) : 191 -197.
  • 10Ndung'u T. TRIM E3 ligases in HIV infection: can these intrinsicimmunity factors be harnessed for novel vaccines or therapies [ J ] ? Virulence, 2011, 2(4): 360-366.

二级参考文献60

  • 1Hoffman R M. Advantages of multi-color fluorescent proteins forwhole-body and in vivo cellular imaging [ J ]. J Biomed Opt,2005,10(4) :41202.
  • 2Passamaneck Y J, Di Gregorio A,Papaioannou V E, ei al. Liveimaging of fluorescent proteins in chordate embryos : fromascidians to mice[ J ]. Microsc Res Tech ,2006 ,69 ( 3 ) ; 160-167.
  • 3Stewart C N Jr. Go with the glow : fluorescent proteins to lighttransgenic organisms[ J]. Trends Biotechnol,2006 ,24(4) : 155-162.
  • 4Seitz G,Warmann S W,Fuchs J, et al. Visualization ofxenotransplanted human rhabdomyosarcoma after transfection with1376.
  • 5Wacker S A, Oswald F, WiedenraannJ, et al. A green to redphotoconvertible protein as an analyzing tool for early vertebratedevelopment [ J]. Dev Dyn, 2007 , 236(2) :473-480.
  • 6Shaner N C, Patterson C H, Davidson M W. Advances influorescent protein technology[J]. J Cell Sci,2007,120( Pt 24):4247-4260.
  • 7Tretyakova Y A, Pakhomov A A, Martynov V I. Chromophorestructure of the kindling fluorescent protein asFP595 fromAnemonia sulcata [ J], J Am Chem Soc,2007,129 (25) :7748-7749.
  • 8Yarbrough D, WachterR M,Kallio K, et al. Refined crystalstructure of DsRed,a red fluorescent protein from coral, at 2.0resolution[ J]. Proc Natl Acad Sci U S A,2001,98(2) ;462-467.
  • 9Niwa H, Inouye S, Hirano T, et al. Chemical nature of the lightemitter of the Aequorea green fluorescent protein [ J ]. Proc NatlAcad Sci U S A, 1996,93(24) :13617-13622.
  • 10Verkhusha V V, Chudakov D M,Gurskaya N G, ei al. Commonpathway for the red chromophore formation in fluorescent proteinsand chromoproteins[ J]. Chem Biol,2004,11 (6) :845-854.

共引文献3

同被引文献23

  • 1Le Sage V, Mouland AJ, Valiente-Echeverria F. Roles of HIV-1 eapsid in viral replication and immune evasion[J]. Vi- rus Res, 2014,193:116-129.
  • 2Lingappa JR, Reed JC, Tanaka M, et al. How HIV-1 gag assembles in cells: putting together pieces of the puzzle[]]. Virus Res, 2014,193 : 89-107.
  • 3Tedbury PR, Freed EO. HIV-1 gag: an emerging target for antiretroviral therapy [J]. Curr Top Microbiol Immunol, 2015,389 : 171-201.
  • 4Barr SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22 [J]. PLoS Pathog, 2008,4:e1000007.
  • 5Eckhardt M, Anders M, Muranyi W, et al. A SNAP-tagged derivative of HIV-I-a versatile tool to study virus-cell inter- actions[J]. PLoS One, 2011,6 : e22007.
  • 6Grigorov B, Areanger F, Roingeard P, et al. Assembly of in- fectious HIV-I in human epithelial and T-lymphoblastic cell lines[J]. J Mol Biol, 2006,3591848-862.
  • 7Sherer NM, Lehmann MJ, Jirnenez-Soto LF, et al. Visual- ization of retroviral replication in living cells reveals budding into multivesicular bodles[J]. Traffic, 2003,4 : 785-801.
  • 8Ono A, Freed EO. Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma mem- brane and the multivesicular body[J]. J Virol, 2004, 78: 1552-1563.
  • 9Nydegger S, Foti M, Derdowski A, et al. HIV-1 egress is gated through late endosomai membranes[J]. Traffic, 2003, 4:902-910.
  • 10Adler J, Parmryd I. Colocatization analysis in fluorescence microscopy[J]. Method Mol Biol, 2013, 931z 97-109.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部