期刊文献+

云南药用野生稻的高光效特性 被引量:3

High Photosynthetic Efficiency of Oryza officinalis Wall in Yunnan
下载PDF
导出
摘要 云南药用野生稻由于原生境生态类型的多样性,在长期自然进化中形成了丰富的遗传多样性,具有许多优异性状,是改良和拓宽栽培稻遗传基础的宝贵基因资源。针对药用野生稻生长势强、生物量积累速率快的性状,对云南药用野生稻的光合特性进行了研究。结果发现,与其他两种野生稻和两种栽培稻相比,云南药用野生稻净光合速率较高,特别是羧化效率和光饱和点均为其余品种的2倍以上,具有高光效潜能,为发掘其中的高光效基因提供了依据。 Oryza officinalis wall is one of the three kinds of wild rice in China. The groups in Yunnan, due to the diversity of the original habitat ecological types, involved abundant genetic diversities and many excellent traits during long-term evolution, and is a pre-cious genetic source to improve and widen the genetic basis of cultivated rice. As to the traits of strong growth potential and great biomass accumulation of O. officinalis, the photosynthetic characteristics of the groups in Yunnan was studied. Compared with other two wild rice and two cultivated rice, the net photosynthetic rate of Yunnan O. officinalis is higher than that of the rest kinds of rice,especially the carboxylation efficiency and the light saturation point were 2 times more than others varieties. This indicated that O. officinalis in Yunnan has a potential of high photosynthetic efficiency, and this will give clues to explore the high photosynthetic effi-ciency genes from them.
出处 《中国稻米》 北大核心 2015年第4期72-76,共5页 China Rice
基金 国家自然科学基金(31460054) 云南省农业生物技术重点实验室开放项目(2013YNNS01) 云南省农业科学院专项(2014CZJ0003)
关键词 野生稻 药用野生稻 高光效 栽培稻 wild rice O.officinalis photosynthetic efficiency cultivated rice
  • 相关文献

参考文献44

  • 1许大全.探索新绿色革命的靶标[J].植物生理学报,2012,48(8):729-738. 被引量:5
  • 2Long S P. We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology or both [J]. Plant Cell Environ, 2014, 37: 19-21.
  • 3Takai T, Adachi S, Taguchi-Shiobara F, et al. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate [J]. Sci Rep, 2013, doi: 10.1038/ srep02149.
  • 4Hibberd J M, Sheehy J E, Langdale J A. Using C4 photosynthesis to increase the yield of rice-rationale and feasibility[J]. Curr Opin Plant Biol, 2008, 11: 228-231.
  • 5yon Caemmerer S, Quick WP, Furbank RT. The development of C4 rice: current progress and future challenges [J]. Science, 2012, 336 : 1 671-1 672.
  • 6Fukayama H, Tsuchida H, Agarie S, et al. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice [J]. Plant Physiol, 2001, 127:1 136-1 146.
  • 7Karki S, Rizal G, Quick WP. Improvement of photosynthesis in rice (Oryza sativa L. ) by inserting the C4 pathway[J]. Rice, 2013(6): 28- 36.
  • 8Roulin S, Feller U. Dithiothreitol triggers photooxidative stress and fragmentation of the large subunit of ribulose-1, 5-Sbisphosphate carboxylase/oxygenase in intact pea chloroplasts [J]. Plant Physiol Biochem, 1998, 36( 12 ): 849-856.
  • 9Mitchell P L, Sheehy J E. Supercharging rice photosynthesis to in- crease yield[J]. New Phytol, 2006, 171: 688-693.
  • 10Barta C, Dunkle A M, Wachter R M, et al. Structural changes asso- ciated with the acute thermal instability of rubisco activase [J]. Arch Biochem Biophys, 2010, 499: 17-25.

二级参考文献227

共引文献558

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部