期刊文献+

基于最大近邻粗糙逼近的特征选择算法 被引量:3

Feature Selection Algorithm Based on Maximal Nearest-neighbor Rough Approximation
下载PDF
导出
摘要 基于邻域粗糙集的特征选择模型受到邻域参数值的制约.为此,引入最大近邻确定样本的邻域,构造了基于最大近邻粗糙集模型.在此基础上,提出了基于最大近邻粗糙逼近的特征选择方法.首先计算样本到与它最近同类和最近异类样本的距离来确定近邻类的大小,其次分析最大近邻类的性质提出快速求解样本正域的方法,最后采用前向贪心搜索策略构造特征选择算法.该算法不仅避免了邻域参数值的不确定选择,而且降低了对样本正域的判断次数.在3个不同分类器和8个UCI数据集上的实验结果表明:该模型不仅能够选择较少的特征,而且有效地提高了分类性能. Feature selection algorithm based on neighborhood rough sets is restricted by the neighborhood size. In this paper, a maximal nearest-neighbor is presented to estimate sample's neighborhood, and the maximal nearest-neighbor rough approximation model is constructed. Based on this model, a feature selection algorithm based on maximal nearest-neighbor rough approximation is proposed. The proposed algorithm first calculate the distance between the nearest missing and the nearest hit of a given sample to determine the size of nearest neighbor, and present a new fast method to calculate the positive region of the maximal nearest-neighbor model, then a forward greedy feature selection algorithm is constructed. This algorithm not only avoids the uncertainty of neighborhood size, but also reduces the number of judgment for positive region of sample. The experiment is conducted on three different classifiers and eight different datasets. Experimental results show that the proposed model selects a few features and effectively improve classification performance.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第8期1832-1836,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61303131 61379021)资助 福建省自然科学基金项目(2013J01028)资助 福建省教育厅科技项目(JA14192)资助 漳州市科技项目(ZZ2013J04)资助 闽南师范大学研究生科研创新基金项目(YJS201433)资助
关键词 特征选择 最大近邻 邻域粗糙集 feature selection maximum nearest-neighbor neighborhood rough sets
  • 相关文献

参考文献4

二级参考文献50

共引文献787

同被引文献32

  • 1李霞,蒋盛益,郭艾侠.基于聚类和信息熵的特征选择算法[J].郑州大学学报(理学版),2009,41(1):77-80. 被引量:4
  • 2LIANG J Y , WANG F , DANG C Y, et al. An efficient rough feature selection algorithm with a multi-granulation view[ J]. Int J Approx Reason, 2012, 53(6) : 912 -926.
  • 3GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. J Mach Learn Res, 2003, 3(6) : 1157 -1182.
  • 4TANG J, ALELYANI S, LIU H. Data classification: algorithms and applications [ M ]. Florida: Chemical Rubber Company Press, 2014.
  • 5LI Y, GAO S Y, CHEN S. Ensemble feature weighting based on local learning and diversity [ C ]//Proceedings of the 26th AAAI conference on artificial intelligence. Edmonton, 2012.
  • 6LIANG J, WANG F, DANG C, et al. An efficient rough feature selection algorithm with a multi-granulation view[ J]. Int J Ap- prox Reason, 2012, 53(6): 912-926.
  • 7ZFIU W, SI G, ZHANG Y, et al. Neighborhood effective information ratio for hybrid feature subset evaluation and selection [ J]. Neurocomputing, 2013, 99(1 ) : 25 - 37.
  • 8LIN Y J, LI J J, LIN P R , et al. Feature selection via neighborhood multi-granulation fusion[J]. Knowl-based Syst, 2014, 67 (1): 162-168.
  • 9LIN Y J, HU X G, WU X D, Quality of information-based source assessment and selection[J]. Neurocomputing, 2014, 133 (1) : 95 - 102.
  • 10HU Q H, CHE X, ZHANG L, et al. Feature evaluation and selection based on neighborhood soft margin[ J]. Neurocomputing, 2010, 73(10): 2114-2124.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部