期刊文献+

基于Gabor小波和有监督2DNPE的人脸识别方法 被引量:3

Face Recognition Method Based on Gabor Wavelet and Supervised 2DNPE
下载PDF
导出
摘要 针对人脸图像识别易受光照、表情等外部因素影响这一问题,提出一种基于Gabor小波和有监督二维近邻保持嵌入算法(S2DNPE)的人脸识别方法.传统的2DNPE算法是一种无监督的流形学习算法,没有考虑类成员之间的关系,为了提高算法的鉴别能力,在其基础上引入类别信息使其变为有监督的2DNPE算法.首先利用Gabor小波对人脸图像进行特征提取,得到对光照、表情等因素都具有一定鲁棒性的图像特征,然后应用S2DNPE算法对其进行降维、提取映射到低维子空间的特征向量,最后采用最近邻分类器分类识别.在Yale、FERET和AR人脸库上进行实验,结果表明,与2DPCA,2DLPP,2DNPE,B2DLPP及G2DPCA算法相比,该方法具有较好的识别率. To solve the problem that the face recognition is easily affected by external factors such as illumination, expression, a new face recognition algorithm based on Gabor wavelet and supervised 2DNPE is proposed. Two-dimensional neighborhood preserving embedding is an unsupervised manifold learning method and it does not take any class membership relation into account. In order to enhance the performance of 2DNPE, the class information is used in S2DNPE. Gabor wavelet is used to extract the feature of human face images and face image features which are robust to illumination variations and face expression changes can be got. Then its dimension is reduced and eigenvectors mapping into low-dimensional subspace are extracted by the method of S2DNPE. Nearest neighbor classifier is adopted for face classification and recognition. The performance of the proposed method is evaluated and compared with 2DPCA, 2DLPP ,2DNPE, B2DLPP and G2DPCA on the Yale, FERET and AR face databases. The experiment results demonstrate the effectiveness and superior of the proposed method.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第8期1896-1901,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61170121)资助
关键词 人脸识别 二维近邻保持嵌入 有监督学习 GABOR小波 face recognition two-dimensional neighborhood preserving embedding supervised learning Gabor wavelet
  • 相关文献

参考文献2

二级参考文献12

  • 1马晓燕,杨国胜,范秋凤,王应军.基于Gabor小波和二维主元分析的人脸识别[J].计算机工程与应用,2006,42(10):55-57. 被引量:11
  • 2陈伏兵,杨静宇.分块PCA及其在人脸识别中的应用[J].计算机工程与设计,2007,28(8):1889-1892. 被引量:26
  • 3聂祥飞,郭军.利用Gabor小波变换解决人脸识别中的小样本问题[J].光学精密工程,2007,15(6):973-977. 被引量:20
  • 4Zhao W,Chellappa R,Philips P J,et al.Face recognition:a litera- ture survey[J].ACM Computing Surveys, 2003,35 (4) : 399-458.
  • 5Lin Kezheng,Xu Ying,Zhong Yuan.Using 2DGabor values and kernel fisher discriminant analysis for face recognition[C]//Proceed- ings of the 2nd International Conference on Information Sci- ence and Engineering,2010:7624-7627.
  • 6Turk M, Pentland A.Eigenfaces for recognition[J].Journal of Cog- nitive Neuroscience, 1991,3 ( 1 ) : 72-86.
  • 7Gottumukkal R,Asari V K.An improved face recognition tech- nique based on modular PCA approach[J].Pattem Recognition Let- ters, 2004,25 (4) : 429-436.
  • 8Sankaran P, Asari V K.A multi-view approach on modular PCA for illumination and pose invariant face recognition[C]//Proceed- ings of the 33rd Applied Imagery Pattern Recognition Work- shop,USA,2004:165-170.
  • 9Wang Xiaojie.Modular PCA based on Within-Class median for face recognition[C]//Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology, China, 2010: 52-56.
  • 10Tao Xiaoyan,Ji Hongbing,Men Jian.KERNEL NEIGHBORHOOD PRESERVING EMBEDDING FOR CLASSIFICATION[J].Journal of Electronics(China),2009,26(3):374-379. 被引量:2

共引文献41

同被引文献20

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部