期刊文献+

基于粒子群算法的燃气管线泄漏疏散能力分析

Analysis on evacuation capability in leakage accident of gas pipeline based on particle swarm algorithm
下载PDF
导出
摘要 为研究燃气管线泄漏事故人员疏散能力,统计分析近年国内燃气泄漏典型事故,得出第三方违章作业施工为燃气泄漏事故比例最高的直接原因及燃气泄漏事故伤亡人数发展趋势,在此基础上,引入粒子群PSO算法,以某施工引起的燃气管线泄漏事故为实例,研究领导者的领导能力和应急处置能力对员工之间信息交流及人员应急疏散能力的影响。分析实例显示现场领导者学习因子偏低,指挥能力差,直接影响事故现场的应急疏散自救行为,甚至改变疏散路径。并进一步分析模拟得出,学习因子提高后,现场领导者和员工的信息更新与交换效率大幅提升,应急疏散能力随之提高,进而提出实用性对策措施和建议,为提升燃气管线泄漏事故应急疏散能力提供技术参考。 To research the evacuation capability in leakage accident of gas pipeline,on the basis of analysis and statistics of domestic gas leakage accidents in recent years,the result that the illegal construction of third party is the direct cause with the highest proportion of gas leakage accidents was obtained,as well as the development trend of casualties in the accidents. Through introducing the particle swarm PSO algorithm,and taking a leakage accident of gas pipeline caused by construction as practical case,the influence by leadership and emergency disposal abilities of leaders to the information exchange of staff and emergency evacuation capacity were studied. It showed that the lower study factors and poor commanding ability of the in- situ leader directly affects the emergency evacuation self- help behavior in accident site,and even changes the evacuation path. By further analysis and simulation,it showed that after the study factors increase,the information update and exchange efficiently of in- situ leader and employee increase greatly,and the emergency evacuation capacity increases accordingly. The practical countermeasures and suggestions were proposed,which provides technical reference for enhancing the emergency evacuation capability in leakage accident of gas pipeline.
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2015年第7期116-122,共7页 Journal of Safety Science and Technology
基金 中国劳动关系学院院级一般项目(13YY008)
关键词 燃气管线泄漏 事故 粒子群PSO算法 学习因子 疏散能力 gas pipeline leakage accident particle swarm PSO algorithm study factor evacuation capacity
  • 相关文献

参考文献14

  • 1赵国菁.日本城市燃气的安全管理[J].煤气与热力,2012,32(4):40-44. 被引量:8
  • 2S. A. H. AlGadhi, H. S. Mahmassani R. Herman. A Speed-Concentration Relation for Bi-Directional Crowd Movements with Strong Interaction, In Pedestrian and E- vacuation Dynamics, M. Schreckenberg and S. D. Shar- ma(Eds). Springer, 2011.3.4.
  • 3Lei Feng, Elise Miller-Hooks. A network optimization- based approach for crowd management in large public gatherings [ J]. Transportation Research Part C 2014, 24 (42) :182-199.
  • 4Frantzich, H. , Benthorn L. Managing evacuating people from facilities during a fire emergency [ J ]. Facilities, 1999, Vol. 17 (9) :325-330.
  • 5徐敏.疏散中的典型心理行为特征分析[J].安全,2007,28(6):42-44. 被引量:12
  • 6项征,徐鸣,温佛德.基于蚁群算法的火灾人群疏散仿真[J].安防科技,2010(3):52-54. 被引量:3
  • 7J. Kennedy, R. Eberhart,. Particle swarm optimization (PSO) algorithm [ J ]. Proc. IEEE Int. Conf. Neural Networks. 1995,15( 1 ) :1942-1948.
  • 8Eberhart R C, Shi Y. Particle Swarm Optimization: devel- opments, applications and resources [C]. 2001 Congress Evolutionary Computation. 2001,1 (6) : 81-86.
  • 9钟一文,宁正元,蔡荣英,詹仕华.一种改进的离散粒子群优化算法[J].小型微型计算机系统,2006,27(10):1893-1896. 被引量:20
  • 10郑瑶辰,陈建桥,魏俊红,郭细伟.基于粒子群算法(PSO)的人员疏散动力学模型[J].武汉理工大学学报(交通科学与工程版),2012,36(2):283-287. 被引量:6

二级参考文献53

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部