期刊文献+

规模化全钒储能电池系统级建模 被引量:11

Modeling of Scaled Vanadium Redox Flow Battery System
下载PDF
导出
摘要 为深入分析全钒氧化还原液流电池(VRB)储能技术在电力系统领域的应用可行性,借助仿真模型研究电池系统运行特性是必不可少的技术手段。由于电化学电池内部化学材料特性易受多种因素的影响,建立便于电气工程研究的电池系统模型尤为重要。首先从应用角度明确了全钒电池非线性时变系统关键参数的影响因子,基于全钒电池基础外特性提出了包含时间因子、温度因素和支路电流损耗等特征量的全钒电池系统级准稳态模型以及暂态模型,用以描述电池内阻、极化、自放电以及漏电流和温度等因素对电池运行特性的影响;并通过对比仿真分析与实验数据分析的结果证明在电池荷电状态(SOC)介于[0.2,0.8]时,该模型能够真实反映电池系统充放电特性及其毫秒级动态响应特性。 To research the feasibility of applying the vanadium redox flow battery (VRB) energy storage technology in the field of power system, a battery system simulating model should be established to study the system operating characteristics. Electrochemical battery belongs to non-linear time-varying system, and the properties of internal chemical materials are susceptible to variety of factors. It is necessary to establish an effective battery system model for electrical study. The target model should reflect most characteristics of battery, such as the internal resistance, polarization, self-discharge, shunt current loss and temperature or even other factors which may influence the operating characteristics of the battery system. First, the key parameters of VRB characteristics were defined from the point of application, then, based on the external characteristics of VRB system, the system-level quasi-steady-state model were established, which contained the factor time-varying, temperature change, and shunt current etc. Finally, by simulating on the platform of PSCAD/EMTDC, the model was proved to be correct and well reflected the charge and discharge characteristics and dynamic response characteristics of VRB system when SOC assigned between[0.2, 0.8].
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第7期2194-2201,共8页 High Voltage Engineering
基金 国家高技术研究发展计划(863计划)(2014AA052004) 国家电网公司总部科技项目(DG71-14-046)~~
关键词 全钒电池 准稳态模型 暂态模型 受控源 时变因子 温变因子 vanadium redox flow battery quasi-steady-state model transient model controlled source factortime-varying factor temperature change
  • 相关文献

参考文献23

  • 1Lu C F, Liu C C, Wu C J. Dynamic modeling of battery energy storage system and application to power system stability[J]. IEE Proceedings: Generation, Transmission and Distribution, 1995, 142(4): 429-435.
  • 2Valerie H J. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 10(2): 321-329.
  • 3Ceraolo M. New dynamical models of lead-acid batteries[J]. IEEE Transactions on Power Systems, 2000, 15(4): 1184-1190.
  • 4Yun H S, Lee J H, Cho B H. Modeling of 36 V lead-acid battery for the 42 V automotive system simulation[C]//II International Confe- rence for Physical Educators(ICPE2004). Hong Kong, China: [s.n.], 2004.
  • 5Zhan C J, Wu X G, Kromlidis S, et al. Two electrical models of the lead-acid battery used in a dynamic voltage restorer[J]. IEE Proceed- hags- Generation, Transmission and Distribution, 2003, 150(2): 175-182.
  • 6Mischie S, Stoiciu.D. A new and improved model of a lead-acid bat- tery[J]. Electronics and Energetics, 2007, 20(2): 187-202.
  • 7Moubayed N, Kouta J, El-All A, et al. Parameter identification of the lead-acid battery model[C]//33th IEEE Photovoltaic Specialists Con- ference. San Diego, CA, USA: IEEE, 2008: 1-6.
  • 8Knauff M, Niebur D, Nwankpa C. A Platform of the testing and vali- dation of dynamic battery models[C]//Electric Ship Technologies Symposium(ESTS), 2009. Baltimore, MD, USA: [s.n.], 2009: 554-559.
  • 9Plett Q LiPB L P. Dynamic cell models for kalman-filter SOC estima- tion[C]//Proceedings of the 19th Electric Vehicle Symposium. Busan, Korea: [s.n.], 2002: 1860-1871.
  • 10Homma T, Zhao Q Ohsawa Y. Theoretical studies on charge and dis- charge characteristics of redox flow battery[J]. Electrical Engineering in Japan, 1989, 109-B(6): 265-272.

二级参考文献93

共引文献212

同被引文献124

引证文献11

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部