期刊文献+

微流控光开关的模拟及特性分析

Simulation and analysis of microfluidic optical switch
下载PDF
导出
摘要 利用微流道内不互溶液体界面可以形成平面波导结构。通过调节不同液体的相对流速控制光线的出射方向实现光开关的功能,仿真研究了一种1×2微流控光开关的特性。当保持芯包层相对流速v=3.8、芯层相对宽度d=0.66时,光从下端口出射;当芯包层的相对速度v=4.3、芯层相对宽度d=0.76时,光从上端口出射。 The planar waveguide can be formed by incompatible interface in the micro channel. By controlling the velocity of two different fluids, it change the direction of the emergent light and realize the function of optical switch. A 1 ×2 micro fluidic optical switch is simulated and its property is investigated. The light exits from one outlet when the relative velocity reach at 3.8 and the relative width of core fluidic is 0.66. The light exits from the other outlet while the relative velocity reach at 4.3 and the relative width of core fluidic is 0.76.
出处 《光通信技术》 北大核心 2015年第8期5-7,共3页 Optical Communication Technology
基金 国家自然科学基金(60878037)资助
关键词 微流控技术 光开关 流速 芯层宽度 光程 microfluidic, optical switch, velocity, width of core, optical path
  • 相关文献

参考文献14

  • 1HUANG P, LAPSLEY M I, AHMED D, ~t al. A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbub- bles.[J]. Applied Physics Letters, 2012, 101(14): 141101-141101--4.
  • 2W S. Pneumatically tunable optofluidic 2 x2 switch for reconfigurable optical circuit[J]. Lab on A Chip, 2011(14):2397-2402.
  • 3周围,张思祥,冉多钢,柳葆.微流控技术在多领域的应用进展[J].光谱仪器与分析,2009(Z1):285-291. 被引量:1
  • 4曹作恺.一种微流控阵列光开关芯片[J].硅谷,2011,4(4):48-48. 被引量:1
  • 5SHEN Z, ZOU Y, CHEN X. An integrated microfluidic signal generator using multiphase droplet grating[J]. Microfluidics &Nanofluidics, 2013, 14 (5):809-815.
  • 6VIPHAVAKIT C, THEMISTOS C, KOMODROMOS M, et al. Devel- opment of integrated microfluidie device for optical flow rate sensing [J]. Journal of Circuits Systems & Computers, 2013, 22(9): 169-176.
  • 7PANG L,CHEN H M,FREEMAN L M,et al. Optofluidic devices and ap- plications in photonics, sensing and imaging..[J]. Lab on A Chip, 2012, 12 (19):3543-3551.
  • 8ERICKSON D. Optofluidics: Optics Enabling Fluidics[J]. Encyclopedia of Mierofluidics & Nanofluidics, 2015,16 ( 1 ) : 2590-2597.
  • 9梁忠诚,赵瑞.微流控光学及其应用[J].激光与光电子学进展,2008,45(6):16-23. 被引量:25
  • 10MONAT C, DOMACHUK P, GRILLET C, et al. Optofluidics: a novel generation of reconfigurable and adaptive compact architectures [J]. Mi- crofluidics & Nanofluidics, 2008, 4(1-2):81-95.

二级参考文献52

  • 1莫建华,林斌.微流控芯片光学检测系统集成化新进展[J].光学仪器,2004,26(6):63-68. 被引量:1
  • 2吴建刚,岳瑞峰,曾雪锋,刘理天.微流控光学器件与系统的研究进展[J].光学技术,2006,32(1):71-74. 被引量:3
  • 3毕颖楠,张惠静.微流控分析芯片在医学领域的应用[J].生物工程学报,2006,22(1):167-171. 被引量:11
  • 4刘学民,聂亚杰,朱春来.微流控芯片及其在生物战剂检测中的应用[J].舰船防化,2006(C00):41-43. 被引量:4
  • 5B. K. Gibson. Liquid mirror telescopes: history [J]. J. Royal. Astron. Soc. Can., 1991, 85(4):158-171
  • 6D. Psaltis, S. Quake, C. H. Yang. Developing optofluidic technology through the fusion of microfluidics and optics [J]. Nature, 2006, 442(7101):381-386
  • 7G. M. Whitesides. The origins and the future of microfluidics [J]. Nature, 2006, 442(7101):368-373
  • 8S. Kwon, L. P. Lee. Focal length control by microfabricated planar electrodes-based liquid lens (μPELL) [C]. Proc. 11th International Conference on Solid State Sensors and Actuators Transducers, 2001, 1342:1348-1351
  • 9T, Krupenkin, S. Yang, P. Mach. Tunable liquid microlens [J]. Appl. Phys. Lett., 2003, 82(3):316-318
  • 10S. Kuiper, B. H. W. Hendriks. Variable-focus liquid lens for miniature cameras [J]. Appl. Phys. Lett., 2004, 85(7):1128-1130

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部