摘要
The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines(TCM) that have neuronal differentiation promoting effects, using P19 embryonic carcinoma cell as a cell-based model. First, the constructed plasmid(p Tα1-Luc) was transfected into P19 cells to establish a screening model. Second, several TCMs were screened using the established model and all-trans-retinoic acid as a positive control. Finally, the underlying molecular mechanism was explored using immunofluorescence staining, q T-PCR, and Western blot analysis. Our results indicated that the drug screen model was established successfully and that both honokiol and hyperoside induced P19 differentiation into neurons, with the possible molecular mechanism being modulating the Wnt signaling pathway. In conclusion, the drug screening model developed in the present study provides a rapid, cell-based screening platform for identifying natural compounds with neuronal differentiation effects.
The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines (TCM) that have neuronal differentiation promoting effects, using Pl9 embryonic carcinoma cell as a cell-based model. First, the constructed plasmid (pTal-Luc) was transfected into P19 cells to establish a screening model. Second, several TCMs were screened using the established model and all-trans-retinoic acid as a positive control. Finally, the underlying molecular mechanism was explored using immunofluorescence staining, qT-PCR, and Western blot analysis. Our results indicated that the drug screen model was established successfully and that both honokiol and hyperoside induced P19 differentiation into neurons, with the possible molecular mechanism being modulating the Wnt signaling pathway. In conclusion, the drug screening model developed in the present study provides a rapid, cell-based screening platform for identifying natural compounds with neuronal differentiation effects.
基金
supported by the China National Key Hi-Tech Innovation Project for the R&D of Novel Drugs(No.2009ZX09302)
National Natural Science Foundation of China(No.81271338)
the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130096110011)