期刊文献+

基于FPGA的复数长方阵SVD算法

Singular Value Decomposition Algorithm of Rectangular Complex Matrix Based on FPGA
下载PDF
导出
摘要 在OFDM和MIMO系统中普遍使用长方形矩阵复数奇异值分解运算。针对传统算法运算量大,迭代次数多的问题,提出了一种基于householder和双边Jacobi的混合优化算法。该算法首先通过householder变换将矩阵化解为二对角矩阵;然后提取2×2复矩阵;再进行改进型复数双边Jacobi变换。兼具有QR算法的高精度和Jacobi算法的低硬件实现成本的优点。给出了2×8的CSVD的FPGA硬件实现方案并进行了板级测试。测试结果表明,该混合优化算法较传统算法在硬件资源上节省26%,延时缩短10倍,在同等位宽下计算精度至少提高了一个数量级。 Rectangular matrix complex singular value decomposition(CSVD) is widely used in orthogonal frequency division multiplexing(OFDM) and multiple input and multiple output(MIMO) systems. In view of large iteration computation of traditional algorithms, a householder and Jacobi based mixed optimized algorithm is proposed which diagonalizes a general complex matrix and carry out an improved complex two-sided Jacobi transform. This method combines the advantages of high precision of QR and the simple hardware structure of Jacobi. A 2×8 CSVD design is implemented on field programmable gate array(FPGA) by using MATLAB simulation and Xilinx platform. Compared with traditional algorithms, the mixed optimized algorithm saves 26% hardware resources, shortens delay time by 10 and improve the accuracy of calculation at least one order of magnitude under the same bit width.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第4期481-486,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61301155 61176025) 中央高校基本科研业务费专项资金(ZYGX2012J003)
关键词 复数奇异值分解 可编程逻辑阵列 householder JACOBI 长方矩阵 CSVD FPGA householder Jacobi rectangular complex matrix
  • 相关文献

参考文献11

  • 1AU E K S, JIN S, MCKAY M R, et al. Analytical performance of MIMO-SVD systems in ricean fading channels with channel estimation error and feedback delay[J]. IEEE Transactions on Wireless Communications,2008, 7(4): 1315-1325.
  • 2SRINIVASAN J, RAJARAM S. FPGA implementation of precoding using low complexity SVD for MIMO-OFDM systems[C]//Information Communication and Embedded Systems (ICICES). [S.I.]: IEEE, 2013.
  • 3CHAKROBORTY S, SAHA G. Feature selection using singular value decomposition and QR factorization with column pivoting for text-independent speaker identification [J]. Speech Communication, 2010, 52(9): 693-709.
  • 4胡谋法,董文娟,王书宏,陈曾平.奇异值分解带通滤波背景抑制和去噪[J].电子学报,2008,36(1):111-116. 被引量:39
  • 5WANG Y, CUNNINGHAM K, NAGVAJARA P, et al. Singular value decomposition hardware for MIMO: State of the art and custom design[C]//Reconfigurable Computing and FPGAs (ReConFig). [S.1.]: IEEE, 2010.
  • 6HAN Q, ZENG L. FPGA Implementation for low-rank channel estimation of OFDM[J]. Journal of Networks, 2012, 7(10): 1631-1638.
  • 7HEMKUMAR N D, CAVALLARO J R. A systolic VLSI architecture for complex SVD[C]//Circuits and Systems, ISCAS'92. [S.1.]: IEEE, 1992.
  • 8赵学智,叶邦彦.单向收缩QR算法在奇异值分解中的收敛特性[J].电子科技大学学报,2010,39(5):762-767. 被引量:9
  • 9MA W, KAYE M E, LUKE D M, et al. An FPGA-based singular value decomposition processor[C]//Electrical and Computer Engineering. [S.I.]: IEEE, 2006.
  • 10LIU J, ZHANG J. A new maximum simplex volume method based on householder transformation for endmember extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 104-118.

二级参考文献27

  • 1胡谋法,李超,韩建涛,王书宏,陈曾平.可见光图像背景起伏的平稳性和相关性分析[J].光电工程,2006,33(3):44-49. 被引量:4
  • 2冯大政,保铮,焦李成.用于奇异值分解的全并行神经网络[J].电子科学学刊,1997,19(1):17-23. 被引量:1
  • 3GolubGH VanLoanCF 袁亚湘译.矩阵计算[M].北京:科学出版社,2001.631-639.
  • 4DRMAC Z,VESELIC K.New fast and accurate Jacobi SVD algorithm(Ⅰ)[J].SIAM Journal on Matrix Analysis and Application,2006,29(4):1322-1342.
  • 5DRMAC Z,VESELIC K.New fast and accurate Jacobi SVD algorithm(Ⅱ)[J].SIAM Journal on Matrix Analysis and Application,2006,29(4):1343-1362.
  • 6NORDBERG T,GUSTAFSSON I.Using QR factorization and SVD to solve input estimation problems in structural dynamics[J].Computer Methods in Applied Mechanics and Engineering,2006,195(7):5891-5908.
  • 7VANLANDUIT S,CAUBERGHE B,GUILLAUME P.Reduction of large frequency response function data sets using robust singular value decomposition[J].Computers and Structures,2006,84(12):808-822.
  • 8MASTRONARDI N,VANBAREL M,VANDEBRIL R.A fast algorithm for computing the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix[J].Numerical Linear Algebra with Applications,2008,15(4):327-337.
  • 9NIE Y Y,LI Z,HAN J D.Origin-shifted algorithm for matrix eigenvalues[J].International Journal of Computer Mathematics,2008,85(9):1397-1411.
  • 10EIDELMAN Y,GOHBERG I,GEMIGNANIL L.On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms[J].Linear Algebra and Its Applications,2007,420(1):86-101.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部