摘要
在OFDM和MIMO系统中普遍使用长方形矩阵复数奇异值分解运算。针对传统算法运算量大,迭代次数多的问题,提出了一种基于householder和双边Jacobi的混合优化算法。该算法首先通过householder变换将矩阵化解为二对角矩阵;然后提取2×2复矩阵;再进行改进型复数双边Jacobi变换。兼具有QR算法的高精度和Jacobi算法的低硬件实现成本的优点。给出了2×8的CSVD的FPGA硬件实现方案并进行了板级测试。测试结果表明,该混合优化算法较传统算法在硬件资源上节省26%,延时缩短10倍,在同等位宽下计算精度至少提高了一个数量级。
Rectangular matrix complex singular value decomposition(CSVD) is widely used in orthogonal frequency division multiplexing(OFDM) and multiple input and multiple output(MIMO) systems. In view of large iteration computation of traditional algorithms, a householder and Jacobi based mixed optimized algorithm is proposed which diagonalizes a general complex matrix and carry out an improved complex two-sided Jacobi transform. This method combines the advantages of high precision of QR and the simple hardware structure of Jacobi. A 2×8 CSVD design is implemented on field programmable gate array(FPGA) by using MATLAB simulation and Xilinx platform. Compared with traditional algorithms, the mixed optimized algorithm saves 26% hardware resources, shortens delay time by 10 and improve the accuracy of calculation at least one order of magnitude under the same bit width.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2015年第4期481-486,共6页
Journal of University of Electronic Science and Technology of China
基金
国家自然科学基金(61301155
61176025)
中央高校基本科研业务费专项资金(ZYGX2012J003)