期刊文献+

AdaBoost人脸检测定点型优化算法 被引量:5

Fixed-Point Optimization Algorithm of AdaBoost Face Detection
下载PDF
导出
摘要 提出一种AdaBoost人脸检测的定点型优化算法,该算法以AdaBoost人脸检测原型算法为基础,分析了Cascade瀑布式级联分类器中弱分类器与强分类器分类计算的特点,有效分解了弱分类器与强分类器的计算过程,从而现实了强分类器与弱分类器相关模型参数有效分离标定。优化算法进一步利用图像积分图及弱分类器计算特点,完成对弱分类器计算过程及相关模型参数的定点型转化;同时,利用强分类器浮点的计算精度要求,完成强分类器计算过程及相关模型参数的定点型转化。该定点型AdaBoost人脸检测方法计算精度逼近原浮点型算法计算精度,保持了较高的人脸检测正确率,并利于后期的SIMD并行计算方法优化,同时,也利于算法在定点型嵌入式设备上的移植与优化。 A new fixed-point optimized algorithm for AdaBoost face detection is proposed. Based on the Ada Boost face detection prototype algorithm, the characteristics of classification calculation of the weak classifiers and strong classifiers in waterfall cascade classifier is analyzed, the computing process of the weak classifiers and the strong classifiers is effectively decomposed, and the effective separation and calibration of the model parameters of the strong classifiers and the weak classifiers are realized. By using integral image and the calculation characteristics of the weak classifier and according to the accuracy requirements of the floating point calculation of strong classifiers, the proposed algorithm realizes the classifier calculation and the transformation of related model parameters. The Ada Boost algorithm has the calculation accuracy approximate to that of the original floating-point algorithm and therefore maintains the higher accuracy of face detection, which will be beneficial for the optimization of SIMD parallel computing method and the transplantation and optimization of the algorithm in the fixed point type of embedded equipments.
作者 周振华
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第4期589-593,共5页 Journal of University of Electronic Science and Technology of China
关键词 ADABOOST 人脸检测 图像积分图 强分类器 弱分类器 AdaBoost face detection integral image strong classifier weak classifier
  • 相关文献

参考文献11

  • 1VIOLA P, MICHAEL J. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Kauai, Hawaii, USA: IEEE, 2001.
  • 2KEARNS M, VALIANT L G. Learning boolean formulae for finite automata is as hard as factoring[R]. Cambridge: Aiken Computation Laboratory, Harvard University, TR-1488, 1998.
  • 3ABDEL-MOTTALEB M, ELGAMMAL A. Face detection in complex environments from color images[C]// Proceedings of IEEE Conference on Image Processing. IS.1.] IEEE, 1999, 3: 622-626.
  • 4KARLEKAR J, DESAI U B. Finding faces in color images using wavelet transform[C]//Proceedings of IEEE Conference on Image Analysis and Processing. Venice, Italy: IEEE, 1999: 1085-1088.
  • 5ZHANG Z Q, ZHU L, LI S Z, et al. Real-time multi-view face detection[C]//Proceedings of The 5th International Conference on Automatic Face and Gesture Recognition. Washington, DC, USA: [s.n.], 2002.
  • 6索璐静,陆小锋,陆亨立,张晶晶,范天翔.实时视频中的快速人脸检测方法[J].计算机工程,2011,37(20):166-168. 被引量:1
  • 7刘晓克,孙燮华,周永霞.基于新Haar-like特征的多角度人脸检测[J].计算机工程,2009,35(19):195-197. 被引量:17
  • 8唐奇,苏光大.基于Adaboost算法的硬件实时人脸检测[J].计算机工程,2008,34(7):248-250. 被引量:2
  • 9徐建军,张蓉,毕笃彦,孙路.一种新的AdaBoost视频跟踪算法[J].控制与决策,2012,27(5):681-685. 被引量:6
  • 10张彦峰,何佩琨.一种改进的AdaBoost算法——M-Asy AdaBoost[J].北京理工大学学报,2011,31(1):64-68. 被引量:11

二级参考文献40

  • 1武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 2王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 3李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 4Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proc. of IEEE Conf on Computer Vision and Pattern Recognition. Kauai, Hawaii, USA: [s. n.], 2001.
  • 5Lienhart R, Maydt J. An Extended Set of Haar-like Features for Rapid Object Detection[C]//Proc. of ICIP'02. New York, USA: [s. n.], 2002.
  • 6Li S Z, Zhu Long, Zhang Zhenqiu, et al. Learning to Detect Multi-view Faces in Real-time[C]//Proceedings of the 2nd International Conference on Development and learning. New York, USA: [s. n.], 2002.
  • 7Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55(1) :119 - 139.
  • 8Viola P, Jones M J. Robust real-time object detection [C]//Proceedings of the 2nd International Workshop on Statistical and Computational Theories of Vision. Vancouver, Canada: [s. n. ], 2001 : 1 - 24.
  • 9Viola P, Jones M. Fast and robust classification using asymmetric AdaBoost and a detector cascade [C] // Advances in Neural Information Processing System 14. Cambridge, MA: MIT Press, 2002.-1311- 1318.
  • 10Ma Yong, Ding Xiaoqing. Real-time rotation invariant face detection based on cost-sensitive AdaBoost[C]// Proceedings of the IEEE International Conference on Image Processing. Barcelona, Spain: [s. n.], 2003: 921 - 924.

共引文献37

同被引文献39

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部