期刊文献+

双模态神经信息检测分析仪器研制

Design and Fabrication of Dual-Mode Neural Signal Detecting Instrument
下载PDF
导出
摘要 针对神经科学基础研究对神经信息检测仪器的迫切需求,研制了双模态神经信息检测分析仪器。该检测仪由中央控制模块、电生理检测模块、电化学检测模块、数据采集模块及多通道神经信息分析处理软件组成,能实现128通道神经电生理信号和8通道神经电化学信号的检测。采用模拟神经信号发生器对该分析仪进行了电生理检测模块性能测试,能实时检测、分析处理128通道的微弱神经电生理信号,提取的Spike信号峰-峰值为320μV。结合64通道离体微电极阵列,采用电化学循环伏安扫描可实现对不同浓度抗坏血酸溶液的检测。实验结果表明,该分析仪能实现对微弱神经电生理和递质电化学信号的检测,为神经信息双模检测奠定了技术基础。 In order to meet the urgent need of neural signal detecting instrument in basic neuroscience research, dual-mode neural signal detecting instrument was developed. The detecting instrument is composed of central controlling module, electrophysiological module, electrochemical module, data acquisition module and neural signal analysis software, thus it can measure 128 channels of electrophysiological signals and 8 channels of electrochemical signals. 128 channels of weak electrophysiological signals from analog neural generator were obtained in electrophysiological module performance test, and the amplitude of the recorded neural spikes was 320 μV. With 64-channel micro-electrode array, the different concentration of ascorbic acid solution was determined by using cyclic voltammetry in electrochemical experiment. The results indicate that the detecting instrument can measure electrophysiological and electrochemical signal, which would provide technical foundation for dual-mode neural information determination.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第4期627-630,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61027001 61125105 61471342) 国家重大科学研究计划(2011CB933202 2014CB744605) 中科院重点部署项目(KJZD-EW-L11-2) 北京市科技计划(Z141100000214002 Z141102003414014)
关键词 双模 多通道 神经电化学 神经电生理 dual-mode multi-channel neural electrochemical neural electrophysiological
  • 相关文献

参考文献13

  • 1中国科学院人口健康领域战略研究组.中国至2050年人口健康科技发展路线图[M].北京:科技出版社,2009:6.
  • 2BUZSAKI C~ Large-scale recording of neuronal ensembles[J]. Nature Neuroscience, 2004, 7(5): 446-451.
  • 3JOHN K C. Using multi-neuron population recordings for neural prosthetics[J]. Nature Neuroscience, 2004, 7(5): 452- 455.
  • 4SCANZIANI M, HAUSSER M. Electrophysiology in the age of light[J]. Nature, 2009, 461(7266): 930-939.
  • 5CARVEY P M, PUNATI A, NEWMAN M B. Progressive dopamine neuron loss in parkinson's disease: the multiple hit hypothesis[J]. Cell Transplantation, 2006, 15(3): 239-250.
  • 6MATTHEW D J, ROBERT K F, MATTHEW D G. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings[J]. Journal of Neuroseience Methods, 2008,174: 62-70.
  • 7POLONA P, MATEJ P, JANEZ R, et al. A chamber for biomechanical, electrochemical and electrophysiological measurements in functional segments of peripheral nerves[J] Measurement, 2013, 46: 654-659.
  • 8MICHAEL A J. In vivo electrochemical measurements: Past, present and future[J]. Bioanalysis, 2013, 5 (2): 119-122.
  • 9ELISA C, ALBERTO A, EMMA M, et al. Electrochemical and electrophysiological performance of carbon nanotube based coatings on neural probes[C]//220th ECS Meeting. [S.1.]: The Electrochemical Society, 2011.
  • 10CHEER J F, HELEN M L, GARRIS P A, et al. Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation[J]. Proc Natl Acad Sci USA, 2005, 102: 19150-5.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部