期刊文献+

基于HMMs和SVM的人体日常动作序列分割识别研究 被引量:4

Research on segmentation and recognition of human daily action sequence based on HMMs and SVM
下载PDF
导出
摘要 随着微机电系统(MEMS)研究的精细化,人体传感器网络(简称体感网)技术在医疗监护领域有了长足发展,而人体动作分析与识别是体感网中富有挑战性的研究课题.采用动态隐马尔可夫模型(HMMs)方法对基于用体感网技术的人体动作序列进行了分割,并且对分割精准度进行了度量分析.从实验结果可以看到,动态HMMs方法优于LIR和Top-Down方法,其分割精准度达到了80%以上.对分割后的数据提取均值、方差等特征,采用支持向量机(SVM)方法分类识别的结果表明所提分割方法具有良好的稳健性,平均识别准确率在89%左右,与手动分割接近. With the refinement of the study of the micro-electro-mechanical system (MEMS),the application of body sensor networks (BSN)has developed rapidly in the field of medical care.Human motion analysis and recognition are challenging research topics in the BSN.An approach of the dynamic hidden Markov models (HMMs)is proposed to segment the time series of the activities based on BSN.A method of the precision measurement is used to test the approach of the segmentation. The experimental results show that the proposed approach is prior to the LIR and Top-Down methods and the segmentation precision of the dynamic HMMs is above 80%.The features of the data obtained from segmentation,such as mean,variance,etc.are extracted.The results of the recognition by support vector machine (SVM)show the robustness of the proposed segmentation method.The mean recognition accuracy is about 89%,which is near the manual segmentation.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第4期411-416,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(61174027 61473058) 中央高校基本科研业务费专项资金资助项目(DUT15ZD114) 辽宁省高等学校杰出青年学者成长计划资助项目(LJQ2012005)
关键词 隐马尔可夫模型(HMMs) 支持向量机(SVM) 动作识别 体感网(BSN) hidden Markov models (HMMs) support vector machine (SVM) activity recognition body sensor networks (BSN)
  • 相关文献

参考文献13

  • 1姜鸣,王哲龙,刘晓博,赵红宇,胡耀华.基于BSN和CHMMs的人体日常动作识别方法研究[J].大连理工大学学报,2013,53(1):121-126. 被引量:15
  • 2AvciA,BoschS,Marin-PerianuM,etal.Activityrecognition usinginertialsensingfor healthcare,wellbeingandsportsapplications:Asurvey[C] //201023rdInternationalConferenceon Architectureof Computing Systems (ARCS).Hannover:VDEVerlagGMBH,2010:1-10.
  • 3RashidiP,Mihailidis A.A survey on ambientassistedlivingtoolsforolderadults[J].IEEEJournalofBiomedicalandHealthInformatics,2013,17(3):579-590.
  • 4FoersterF,Smeja M,FahrenbergJ.Detectionofpostureand motionbyaccelerometry:avalidationstudyinambulatorymonitoring[J].Computersin HumanBehavior,1999,15(5):571-583.
  • 5MantyjarviJ,HimbergJ,SeppanenT.Recognizinghuman motion with multipleacceleration sensors[J].Proceedings of the IEEE InternationalConference on Systems,Man,and Cybernetics,2001,2:747-752.
  • 6LeeSH,ParkH D,HongSY,etal.Astudyonthe activity classification using a triaxialaccelerometer[J].AnnualInternationalConferenceoftheIEEE Engineeringin MedicineandBiology-Proceedings,2003,3:2941-2943.
  • 7KarantonisD M,Narayanan M R,Mathie M,etal.Implementationofareal-timehumanmovementclassifier using a triaxial accelerometer forambulatorymonitoring[J].IEEE TransactionsonInformation Technology in Biomedicine,2006,10(1):156-167.
  • 8KhanA M,LeeY K,LeeSY,etal.Atriaxialaccelerometer-basedphysical-activityrecognitionviaaugmented-signal features and a hierarchicalrecognizer[J].IEEE TransactionsonInformationTechnologyin Biomedicine,2010,14(5):1166-1172.
  • 9Zhang M,Sawchuk A A.Human dailyactivityrecognition with sparse representation usingwearablesensors[J].IEEEJournalofBiomedicalandHealthInformatics,2013,17(3):553-560.
  • 10KulicD,OttC,LeeD,etal.Incrementallearningoffullbodymotionprimitivesandtheirsequencingthrough human motion observation[J].InternationalJournalof Robotics Research,2012,31(3):330-345.

二级参考文献21

  • 1YANG G Z,Yacoub M. Body Sensor Networks[M].New York:springer-verlag,2006.
  • 2Scanaill C N,Carew S,Barralon P. A review of approaches to mobility telemonitoring of the elderly in their living environment[J].Annals of Biomedical Engineering,2006,(04):547-563.
  • 3King R C,Atallah L,Wong C. Elderly risk assessment of falls with BSN[A].Washington,DC:IEEE Computer Society,2010.30-35.
  • 4Steele B G,Belza B,Cain K. Bodies in motion:Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease[J].Journal of Rehabilitation Research and Development,2003,(05):45-58.
  • 5Boyle J,Karunanithi M,Wark T. Quantifying functional mobility progress for chronic disease management[A].New York:IEEE Press,2006.5916-5919.
  • 6WANG Zhe-long,JIANG Ming,ZHAO Hong-yu. A pilot study on evaluating recovery of the post-operative based on acceleration and sEMG[A].Washington,DC:IEEE Computer Society,2010.3-8.
  • 7Aziz O,Lo B,Pansiot J. From computers to ubiquitous computing by 2010:health care[J].Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences,2008,(1881):3805-3811.
  • 8Atallah L,YANG Guang-zhong. The use of pervasive sensing for behaviour profiling-a survey[J].Pervasive and Mobile Computing,2009,(05):447-464.doi:10.1016/j.pmcj.2009.06.009.
  • 9Preece J S,Goulermas Y J,Kenney P J L. Activity identification using body-mounted sensors-a review of classification techniques[J].Physiological Measnrement,2009,(04):1-33.
  • 10BAO Ling,Intille S S. Activity recognition from user-annotated acceleration data[J].Pervasive Computing-Lecture Notes in Computer Science,2004,(01):1-17.

共引文献2285

同被引文献34

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部