期刊文献+

求解Burgers方程的决定方程的两种方法研究

Two Methods for Solvingthe Determining Equations of the Burgers Equation
下载PDF
导出
摘要 论文研究了两种求解偏微分方程的决定方程的方法,一种是运用向量场及其延拓方法,另一种是通过符号计算软件maple自动求解软件包。论文以Burgers方程为例,证明两种方法得到的结果相同。但运用maple自动求解软件包能够避免复杂的代数计算,提高计算的速度与准确率,适用于求解复杂的高阶非线性偏微分方程。 This paper studies two methods for solving the determining equations of partial differential equations. One is using the vector field and its extension, the other is by automatic solution package of symbolic computation software maple. Burgers equation in the text, for example, proves that the two methods get the same result. But the use of maple automatic solution package can avoid complex algebraic calculations and improve the computing speed and accuracy, which can be ap- plied to other complex higher order nonlinear partial differential equation.
作者 李晓燕 张成
出处 《计算机与数字工程》 2015年第7期1187-1189,共3页 Computer & Digital Engineering
基金 陕西省科技厅工业攻关项目(编号:2013K06-39)资助
关键词 BURGERS方程 无穷小算子 延拓 决定方程 Burgers equation, the infinitesimal operator, extension, determining equations
  • 相关文献

参考文献2

二级参考文献24

  • 1Bluman G W and Kumei S 1989 Symmetries and Differential Equations: Applied Mathematical Sciences 81 (Berlin: Springer)
  • 2Schwarz F 1988 Lecture Notes in Comput. Sci. 296 167
  • 3Schwarz F and Augustin S 1992 Computing 49 95
  • 4Champagne B, Hereman W and Winternitz P 1991 Comp. Phys. Comm. 66 319
  • 5Hereman W 1994 Eur. Math. Bull. 1 45
  • 6Baumann G 1992 Lie Symmetries of Deferential Equations: A Mathematica Program to Determine Lie Symme. tries MathSource 0202-622 (Champaign, IL: Wolfram Research Inc.)
  • 7Carminati J, Devitt J S and Fee G J 1992 J. Symb. Comput. 14 103
  • 8Korteweg D J and de Vries G 1985 Philos. Magn. 39 422
  • 9Boussinesq J 1871 Comptes Rendus Acad. Sci. Paris 72 755
  • 10Whittham G B 1974 Linear and Nonlinear Waves (New York: Wiley)

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部