期刊文献+

基于改进NPGA算法的多目标优化云任务调度算法 被引量:1

An Improved Multi-objective Optimization Algorithm Based on NPGA for Cloud Task Scheduling
下载PDF
导出
摘要 随着云计算的不断发展,传统的单目标优化下的任务调度已经不能满足用户的服务质量要求。论文选取运行时间、费用和负载均衡建立多目标优化的云任务调度模型,提出一种改进的多目标小生境Pareto遗传算法(NPGA),采用相似任务序列交叉操作加快进化,再采用位移变异避免算法过早收敛。此外,通过自适应选取比较集合规模和小生境半径提高算法的收敛速度。仿真结果表明,改进后的NPGA算法在云调度中保持Pareto最优解的多样性和分布性更优。 As cloud computing continues to evolve, task scheduling under the traditional single-objective optimization has been unable to meet the user's requirements for quality of service. This paper selects the running time and cost and load balance of establishing a multi-objective optimization of cloud task scheduling model, an improved multi-objective niche Pare- to genetic algorithm(NPGA) is proposed to speed up evolution and avoid premature convergence through a similar task se- quence erossover(STOX) operating and shift mutation. In addition, the size of comparison set and niche radius are selected a- daptively to improve convergence speed. Simulation results show that improved NPGA algorithm is better to maintain diver- sity and distribution of Pareto optimal solutions in the cloud scheduling.
作者 杨燕
机构地区 扬州职业大学
出处 《计算机与数字工程》 2015年第7期1196-1201,1216,共7页 Computer & Digital Engineering
关键词 多目标优化 云任务调度 小生镜Pareto遗传算法 服务质量要求 multi-objective optimization, cloud task scheduling, niche Pareto genetic algorithm, quality of service
  • 相关文献

参考文献11

  • 1陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1311
  • 2李强,郝沁汾,肖利民,李舟军.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,2011,34(12):2253-2264. 被引量:123
  • 3Ruiz, Ruben, Concepcion Maroto, and Javier Alcaraz. Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 2006,34(5) .461-476.
  • 4Murata, Tadahiko, HisaoIshibuchi, et al. Genetic al- gorithms for flowshop scheduling problems[J]. Com- puters ga Industrial Engineering, 1996, 30 (4): 1061- 1071.
  • 5Izakian, Hesam, Ajith Abraham, et al. Comparison of heuristics for scheduling independent tasks on heterogeneous distributed environments. Computational Sci- ences and Optimization, 2009. CSO 2009. International Joint Conference on. Vol. 1. IEEE,2009.21-26.
  • 6Buyya, Rajkumar, et al. Cloud computing and emer- ging IT platforms. Vision, hype, and reality for delive- ring computing as the 5th utility. Future Generation computer systems, 2009,25 (6) : 599-616.
  • 7Kacem I, Hammadi S, Borne P. Pareto-optimality ap- proach for flexible job-shop scheduling problems, hy- bridization of evolutionary algorithms and fuzzy logic [J]. Mathematics and computers in simulation, 2002, 60(3) .245-276.
  • 8Erickson M, Mayer A, Horn J. Multi-objective opti- mal design of groundwater remediation systems: appli- cation of the niched Pareto genetic algorithm(NPGA) [J]. Advances in Water Resources, 2002,25 (1) .- 51-65.
  • 9Duan J H, Zhang M, Qiao G Y, et al. A genetic algo- rithm for permutation flowshop scheduling with total flowtime criterion[C]//Control and Decision Confer- ence(CCDC), 2011 Chinese. IEEE,2011.1514-1517.
  • 10Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization]-C// Evolutionary Computation, 1994. IEEE World Con- gress on Computational Intelligence. , Proceedings of the First IEEE Conference on. Ieee, 1994 . 82-87.

二级参考文献71

  • 1黄聪明,陈湘秀.小生境遗传算法的改进[J].北京理工大学学报,2004,24(8):675-678. 被引量:49
  • 2郭观七,喻寿益.小生态进化技术综述[J].计算机工程与设计,2005,26(4):857-861. 被引量:5
  • 3Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 4Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 5Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 6Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 7Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 8Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 9Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 10Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.

共引文献1427

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部