期刊文献+

基于多分类支持向量机的模式识别研究 被引量:5

Pattern Recognition Based on Multi-class Support Vector Machine
下载PDF
导出
摘要 支持向量机是现代人工智能领域中的一个重要分支,它在统计学习理论的基础上,实现了结构风险最小化,提高了分类器的泛化能力,保证了分类的准确度。论文提出一种基于多分类支持向量机的模式识别方法,采用特征选择序列极小化算法对数据样本特征进行选择,并在此基础上,分析对比了"一对一"分类算法和"一对多"分类算法,实验结果表明,"一对一"分类算法的分类准确性较高,且具有较好的推广能力。 Support vector machine is an important branch in the field of modem artificial intelligence. Based on statistical learning theory, it implements the structural risk minimization, improves the generalization ability of the classifier, guarantees the accuracy of classification. This paper proposes a pattern recognition method based on support vector machine The eigenval- ues selection sequence minimizing method is adopted to select the characteristic of data sample. On this basis, the "one-against- one" classification algorithm and "one-against-all" classification algorithm are analyzed and compared. The experimental results show that the "one-against-one" classification algorithm has higher accuracy, and better generalization ability.
作者 苏晓伟
出处 《计算机与数字工程》 2015年第7期1202-1206,共5页 Computer & Digital Engineering
关键词 多分类 支持向量机 模式识别 序列极小化 multi-class, support vector machine, pattern recognition, minimizing sequence
  • 相关文献

参考文献8

  • 1贺贵明.基于神经网络的车牌字符识别研究[D].武汉:武汉大学,2004.
  • 2Vapnik V N. The Nature of Statistical Learning Theo- ry[M]. New York.- Springer-Verlag, 1995 : 1-15.
  • 3丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:917
  • 4张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 5Lee L, Lin Y, Wahba G. Multicategory support vector machines[R]. Technical Report 1040, Department of Statistics, University of Madison, Wisconsin, 2001.
  • 6J. A. K. Suykens, J. Vandewalle. Multicalass least squares support vector machines[C-I// IJCNN99 In- ternational Joint Conference on Neural Network, Washington, 13(2,1999.
  • 7王国胜.核函数的性质及其构造方法[J].计算机科学,2006,33(6):172-174. 被引量:52
  • 8Chapelle O, Haffner P, Vapnik V N. Support vector machines for histogram-based image classify-cation FJ]. Neural Networks, IEEE Transactions on, 1999, 10(5) : 1055-1064.

二级参考文献41

共引文献3153

同被引文献33

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部