期刊文献+

基于压缩感知的Dreamlet域数据重构方法及应用 被引量:7

Seismic data reconstruction in Dreamlet domain based on compressive sensing
下载PDF
导出
摘要 随着压缩感知(CS)理论的完善,逐步发展形成了基于该理论的新的信号处理技术。近年来,在石油地震勘探领域,基于该理论的随机稀疏数据采样、数据重构及规则化和稀疏采样观测系统优化设计等方面的研究取得了重要进展。本文在Ru-Shan Wu博士等提出的Dreamlet域数据重构技术基础上,针对实际地震数据在时间和空间上剧烈变化以及存在较强干扰背景情况,通过优化重构参数和流程,对随机稀疏采样的模拟和真实地震数据进行了重构和对比分析。模拟和实际数据应用显示,该技术是一种高效和高质量的地震数据重构方法。 A new signal processing technique was developed recently due to the progress of compressive sensing theory,which is attracted attention in petroleum and nature gas exploration.Recently great progress has been made in seismic data random sparse sampling,seismic data reconstruction,seismic data regularization,and optimized geometry design.In this paper,we propose a new data reconstruction method based on the data reconstruction method in Dreamlet domain presented by Ru-Shan Wu.According to energy great variation in time and space domain and strong noise of seismic data,we reconstruct and compare synthetic data of random sparse sampling and real seismic data by optimizing parameters and the reconstruction process.Synthetic and real data tests show that the proposed method is a high-efficient and high-quality one.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2015年第3期399-404,1,共6页 Oil Geophysical Prospecting
关键词 压缩感知 数据重构 Dreamlet域 随机采样 稀疏数据 compressive sensing,data reconstruction,Dreamlet domain,random sample,sparse data
  • 相关文献

参考文献9

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J K et al. Stable signal recovery from incomplete and inaccurate measurements. Com- munications on Pure and Applied Mathematics, 2006, 59(8) : 1207-1223.
  • 3Herrmann F J. Randomized sampling and sparsity: Get- ting more information from fewer samples. (;eophy- sics, 2010, 75(6): WB173-WB187.
  • 4Ru-Shan Wu, Wu Bangyu,Geng Yu. Imaging in com- pressed domain using dreamlets. CPS/SEG Beljing In- ternational Geophysical Conference :. Exposition Ex panded Abstracts,2009, ID57.
  • 5Ru-Shan Wu,Geng Yu, Ye Lingling. Preliminary study on Dreamlet based compressive sensing data recovery. SEG Technical Program Expanded Abstracts, 2013, 32:3585-3589.
  • 6Herrmann F J ,Wang D I. et al. Curvelet-based seismic data processing: A multiseale and nonlinear approach. Geophysics, 2008,73(1) :A1-A5.
  • 7I.i Chengbo, Mosher C C, Kaplan S T. Interpolated compressive sensing for seismic data reconstruction. SEG Technical Program Expanded Abstracts, 2012, 31:1-6.
  • 8Mosher C C,Kaplan S T, Janiszewski F D. Non-uni- form optimal sampling for seismic surve design. EA- GE Copenhagen Meeting Expanded Abstracts, 2012, X034.
  • 9Ru-Shan Wu, Geng Yu, Wu Bangyu. Physical wavelet defined on an observation plane and the Dreamier. SEG Technical Program Expanded Abstracts, 2011, 30: 3835-3839.

同被引文献178

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部