期刊文献+

利用谱分解技术预测河流相储层 被引量:18

River sedimentary microfacies prediction based on spectral decomposition
下载PDF
导出
摘要 利用谱分解技术对原始地震数据体进行相应的数学变换可得到调谐体、时频体和单频体(振幅体和相位体),进而通过对调谐体、时频体和单频体的解释得到对目标体的地质认识。本文应用最大熵法定量求取储层厚度,并对误差进行分析,同时运用频率扫描方法定性预测储层厚度变化,并利用广义S变换方法和交会融合预测沉积微相。首先,通过多井对比,分析测井相和砂体厚度;然后通过井震结合,分析各井对应井段的薄层砂岩振幅调谐体,确定合理的调谐频率,并对砂体厚度进行分析;再通过建立响应频率、砂体厚度与沉积微相之间的交会关系,在测井微相约束下预测沉积微相。应用结果证实,谱分解技术结合井资料可直观地反映河道砂体储层厚度分布和沉积微相区带展布规律。 Spectrum decomposition uses mathematical transformation to get tuning cube,time-frequency volume and single frequency volume(amplitude and phase)from seismic data.Maximum entropy method is applied in this article to calculate reservoir thickness,and the error is analyzed.At the same time the frequency scanning method is used to predict reservoir thickness and GST and RGB are used to predict sedimentary microfacies.First the log facies and sand body thickness are analyzed.Then the tuning amplitude of thin layer sandstones is used to determine reasonable tuning frequencies and analyze sand body thickness.Finally crossplots among response frequency,sand thickness,and sedimentary microfacies are built to predict the sedimentary microfacies under the restriction of well logging microfacies with loggingmicrofacies constrain.Application results confirm that the spectral decomposition combined with well data can intuitively reflect channel sand reservoir thickness and sedimentary microfacies belt distribution.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2015年第3期502-509,5,共8页 Oil Geophysical Prospecting
关键词 谱分解 曲流河 沉积微相 砂体厚度 响应频率 调谐体 spectral decomposition,meandering river,microfacies,sand thickness,response frequency,tuning cube
  • 相关文献

参考文献14

  • 1Partyka G, Gridley J, Lopez J. Interpretational appli- cations of spectral decomposition in reservoir charac- terization. The Leading Edge, 1999,18(1) : 353-3601.
  • 2Aydm A,Luis F C. Evolutionary chirp representation of non-stationary signals via Gahor transform. Signal Processing,2001,81(1) :2429- 2436.
  • 3Satish S H,Partha S R,Phil D A. Spectral decomposi- tion of seismic data with continuous-wavelet trans- form. Geophysics, 2005,70(6) : 19- 251.
  • 4Stockwell R G, Mansin H L, Lowe R P. Localization of the complex spectrum: the S-transform. IEEE Transactions on Signal Processing, 1996,44 (4) : 998- 1001.
  • 5Liu J. Spectral Decomposition and its Application in Mapping Stratigraphy and Hydrocarbons: Disserta- tion. Houston:University of Houston,2006.
  • 6张延庆,魏小东,王亚楠,王贵艳,李秀珍.谱分解技术在QL油田小断层识别与解释中的应用[J].石油地球物理勘探,2006,41(5):584-586. 被引量:37
  • 7李小梅,俞娟丽.时频分析技术在层序旋回划分中的应用[J].石油与天然气地质,2008,29(6):793-796. 被引量:17
  • 8魏志平.谱分解调谐体技术在薄储层定量预测中的应用[J].石油地球物理勘探,2009,44(3):337-340. 被引量:26
  • 9刘建华,刘天放,李德春.薄层厚度定量解释研究[J].物探与化探,1997,21(1):23-28. 被引量:17
  • 10[4]大港油田石油地质志编辑委员会.中国石油地质志(卷四)-大港油田[M].北京:石油工业出版社,1991:418-434.

二级参考文献67

共引文献193

同被引文献219

引证文献18

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部