期刊文献+

具增生的细菌群体中一类迁移算子的谱分析 被引量:1

The Spectral Analysis of a Transport Operator for Growing Bacterial Populations
下载PDF
导出
摘要 在Lp(1≤p<+∞)空间上,研究了一类具增生的细菌群体中具一般边界条件的迁移方程,讨论了这类模型相应的迁移算子的谱分析,得到了该迁移算子的谱在右半平面上仅有有限个具有限代数重数的离散本征值等结果。 The objective of this paper is to research a transport equation of the growingbacterial populations with generalized boundary condition in Lp( 1≤p + ∞) space,It is discussed the spectral analysis of corresponding transport operators for this moder,and it is to obtain that the spectrum of the transport operatorsconsists of finite isolate eigenvalues with finite algebraic mutiplicities in right half plane.
出处 《上饶师范学院学报》 2015年第3期1-5,共5页 Journal of Shangrao Normal University
基金 国家自然科学基金资助项目(11461055) 江西省自然科学基金资助课题(20151BAB201029)
关键词 细菌群体 一般边界条件 迁移方程 谱分析 bacterial population transport equation generalized boundary conditions spectral analysis
  • 相关文献

参考文献16

  • 1Rotenberg M. Transport theory for growing eel populations[J]. J theor Biol, 1983, 103(2):181 - 199.
  • 2Boulanouar M. A transpot equation in cell population dynamics[J]. Diff Inte Equa. 2000,13:125 - 144.
  • 3Botdanouar M. Asymptotic behavior of trampot equation in cell population dynamics with a null maturation velocity[J]. J Math Anal Ap-pl,2000,243(1):47- 63.
  • 4Boulanouar M. Transpot equation in cell population dynamics (I)[J]. Elee Diff Equa. 2010, 144:1-20.
  • 5Boulanouar M. Transpot equation in cell population dynamics (U)[J]. Elec Diff Equa N 2010, 145:1 - 20.
  • 6王胜华,翁云芳,阳名珠.人体细胞增生中一类迁移算子的谱分析[J].数学物理学报(A辑),2010,30(4):1055-1061. 被引量:34
  • 7王胜华,吴军建.种群细胞增生中一类Rotenberg模型研究[J].应用泛函分析学报,2014,16(4):296-302. 被引量:5
  • 8Wu Hongxing, Wang Shenghua, Yuan Dengbin. Spectral distribution cff transport operator Arising in cell Populalion[J] .Journal of Func- tion Spaces ,Volume 2014, Article ID 748792, 10 pages.
  • 9Boulanouar M. Transpot equation for growing bacterial poptrlatiom (I)[J]. Elec Diff Equa. 2012, 221:1 - 25.
  • 10Boulanouar M. A mathematical study for a Rotenberg model[J]. 2002, 265(2):371- 394.

二级参考文献19

  • 1Jeribi A, Megdiche H Moalla N. On a transport arising in growing cell populations II Cauchy problem. Math Methods in the Applied Sciences, 2005, 28:127-145.
  • 2Latrach K, Mokhtar-Kharroubi M. On an unbounded linear operator arising in the theory of growing cell population. J Math Anal Appl, 1997, 211:273-294.
  • 3Boulanouar M. A mathematical study for a Rotenberg model. Math Anal Appl, 2002, 265:371-394.
  • 4Jeribi A. Time asymptotic behaviour for unbounded linear operator arising in growing cell populations. Nonlinear Analysis: Real World Appl, 2003, 4:667-688.
  • 5Lods B, Mokhtar-Kharroubi M. On the theory of a growing cell population with zero minimum cycle length. J Math Anal Appl, 2002, 266:70-99.
  • 6Mokhtar-Kharroubi M. Time asymptotic behaviour and compactness in nertron transport theory. Europ J Mech B Fluid, 1992, 11:39-68.
  • 7Lebowitz J L,Rubinow S I.A theory for the age and generation time distribution of a microbial population[J].J Math Biol,1974,1:17-36.
  • 8Latrach K,Mokhtar-Kharroubi M.On an unbounded linear operator arising in the theory of growing cell popultion[J].J Math Anal Appl,1997,211:273-294.
  • 9Boulanouar M.A mathematical study for a Rotenberg mobel[J].Math Anal Appl,2002,265:371-394.
  • 10Rotenberg M.Transport theory for growing cell populations[J].J Theor Biol,1983,103:181-199.

共引文献33

同被引文献6

  • 1Lebowitz J, Rubiow S I. A theory for the age generation time distribution of a microbial population [J]. Math Biol, 1974, 1: 17-36.
  • 2Rotenbeng M. Theory of distributde quiescent state in cell cycle[J]. J Theor Biol, 1982,96: 495-509.
  • 3Rotenbeng M. Transpirt theory for growing cell population[J].J.Theor.Biol, 1983,103: 181-199.
  • 4Wolfgang Arendt.Resolvent Positive Operators[M]. Proc. London Math Soc, 1987: 321-349.
  • 5Arams R A. Sobolev space [M]. Pittsburgh: Academic Press, 2003.
  • 6王胜华,翁云芳,阳名珠.人体细胞增生中一类迁移算子的谱分析[J].数学物理学报(A辑),2010,30(4):1055-1061. 被引量:34

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部