摘要
利用不连续动力系统理论研究了一类异质二阶多自主体系统的一致性。不同于之前一致性问题中关于系统渐近一致性的结论,笔者通过一个不连续的一致性协议,具体分析了系统在有限时间内的完全一致性及部分一致性的结果。首先根据协议的约束将区域进行划分,分别定义相应的子系统。然后适当定义了 G 函数,并利用 G 函数的性质给出了两个系统部分一致性开始和一致性消失的解析条件。通过解析条件可以得到两个系统部分时间段上的部分一致性结果,同时给出了两个系统出现完全一致性的解析条件。最后通过数值模拟说明了完全一致性情形。
In this paper,we study the consensus of a class of heterogeneous second - order multi - agent system by the theory for discontinuous dynamical systems. The full consensus and partial consensus in limited time interval are discussed through a discontinuous protocol,which are different from the asymptotical consensus in existing results. First of all,we divide the domain through the protocol,and define the corresponding subsystems in each subdomains. Then we present the definition of G function,and give the conditions for onset and vanishing of partial consensus by the properties of G function. The partial consensus of the system can be got through the given conditions. Also,the condition for full consensus is presented. And the effectiveness of the condition is illustrated through the numerical simulation.
出处
《山东师范大学学报(自然科学版)》
CAS
2015年第3期1-5,共5页
Journal of Shandong Normal University(Natural Science)
基金
国家自然科学基金资助项目(11171192)
高等学校博士学科点专项科研基金(博导类)资助项目(20123704110001).
关键词
不连续动力系统
完全一致性
部分一致性
一致性开始
一致性消失
discontinuous dynamical system
full consensus
partial consensus
onset of consensus
vanishing of consensus