期刊文献+

基于径向基函数插值与SVM的协同过滤算法

A Collaborative Filtering Algorithm Based on Radial Basis Function Interpolation and SVM
下载PDF
导出
摘要 为了解决在推荐系统中由于数据的稀疏性导致协同过滤算法准确率低下的问题,提出一种混合径向基函数插值和SVM分类的协同过滤推荐算法。该方法先利用径向基函数插值方法对训练数据中缺失数据进行预测与填补,然后利用支持向量机方法根据插值后的数据来对未知数据进行预测,从而形成推荐列表为系统提供推荐服务。实验结果表明该方法克服了数据质量对推荐算法的影响,相比其他SVM方法具有更高的准确率和稳定性。 Due to the fact that the data sparseness leads to the low accuracy of a collaborative filtering recommendation system, this paper proposed a collaborative filtering algorithm based on Radial Basis Function (RBF) interpolation and SVM. The algorithm first uses the RBF interpolation to fill the missing data in training data set, and then a SVM classifier is introduced to predict the label for testing data by using the interpolated data set as training set. The test result shows that the method overcomes the impact of data quality on the recommended algorithm, and it outperforms other methods in accuracy and stability.
出处 《计算机与现代化》 2015年第8期98-103,共6页 Computer and Modernization
基金 广州市科技计划项目科学研究专项(2014J4100095) 广东省高等职业教育教学改革项目(201401181)
关键词 协同过滤 径向基函数 插值 支持向量机 collaborative filtering radial basis function interpolation support vector machine
  • 相关文献

参考文献29

  • 1Symeonidis P, Nanopoulos A, Papadopoulos A N, et al. Col- laborative recommender systems: Combining effectiveness and etficiency[ J ]. Expert Systems with Applications, 2008,34 (4) :2995-3013.
  • 2Leung Cane Wing-ki, Chan Stephen Chi-fai, Chang Fu-lai. An empirical study of a cross-level association rule mining ap- proach to cold-start recommendations [ J ]. Knowledge-Based Systems, 2008,21 (7) :515-529.
  • 3Weng Sung-shun, Lin Binshan, Chen Wen-tien. Using con- textual information and multidimensional approach for rec- ommendation[ J]. Expert Systems with Applications, 2009, 36(2) :1268-1279.
  • 4Liu Duen-ren, Shih Ya-yueh. Hybrid approaches to prod- uct recommendation based on customer lifetime value and purchase preferences [ J ]. Journal of Systems and Software, 2005,77(2) :181-191.
  • 5Hernrndez del Olmo Frlix, Gaudioso Elena, Martin Edu- ardo H. The task of guiding in adaptive recommender sys- tems [ J ]. Expert Systems with Applications, 2009,36 (2) : 1972-1977.
  • 6Kunaver Matev~, Po~rl Toma~, PogaSnik Matev~., et al. Optimisation of combined collaborative recommender sys- tems [ J ]. AEU-Intemational Journal of Electronics and Communications, 2007,61 (7) :433-443.
  • 7Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[ J ]. ACM SIGMOD Record, 1993,22(2) :207-216.
  • 8Goldberg D, Nichols D A, Oki B M, et al. Using collabo- rative filtering to weave an information tapestry [ J ]. Com- munications of the ACM, 1992,35 (12) :61-70.
  • 9Huang Cheng-lung, Huang Wei-liang. Handling sequential pattern decay: Developing a two-stage collaborative recom- mender system [ J ]. Electronic Commerce Research and Applications, 2009,8 (3) : 117-129.
  • 10Huang Zan, Zeng Daniel, Chen Hsinchun. A comparison of collaborative-filtering recommendation algorithms for e- commerce[ J ]. Intelligent Systems, IEEE, 2007,22 (5) : 68-78.

二级参考文献12

  • 1S.Ansari,R.Kohavi,L.Mason,et al.Integrating E-commerce and data mining:Architecture and challenges.In:Proc.2001 IEEE Int'l Conf.Data Mining.Los Alamitos,CA:IEEE Computer Society Press,2001.27~34
  • 2B.Sarwar,G.Karypis,J.Konstan,et al.Analysis of recommendation algorithms for E-commerce.In:Proc.2nd ACM Conf.Electronic Commerce.New York:ACM Press,2000.158~167
  • 3B.Sarwar,G.Karypis,J.Riedl.Item-based collaborative filtering recommendation algorithms.In:Proc.10th Int'l World Wide Web Conference.New York:ACM Press,2001.285~295
  • 4J.Breese,D.Hecherman,C.Kadie.Empirical analysis of predictive algorithms for collaborative filtering.In:Proc.14th Conf.Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann,1998.43~52.
  • 5B.M.Sarwar,G.Karypis,J.A.Konstan,et al.Application of dimensionality reduction in recommender system -A case study.In:Proc.ACM WebKDD 2000 Web Mining for E-Commerce Workshop.New York:ACM Press,2000.82~90
  • 6C.C.Aggarwal.On the effects of dimensionality reduction on high dimensional similarity search.In:Proc.12th ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems.New York:ACM Press,2001.256~266
  • 7B.Sarwar,J.Konstan,A.Borchers,et al.Using filtering agents to improve prediction quality in the groupLens research collaborative filtering system.In:Proc.ACM Conf.Computer Supported Cooperative Work (CSCW).New York:ACM Press,1998.345~354
  • 8N.Good,J.B.Schafer,J.A.Konstan,et al.Combining collaborative filtering with personal agents for better recommendations.In:Proc.16th National Conf.Artificial Intelligence (AAAI-99).Menlo Park,CA:AAAI/MIT Press,1999.439~446
  • 9K.Goldberg,T.Roeder,D.Gupta,et al.Eigentaste:A constant time collaborative filtering algorithm.Information Retrieval,2001,4(1):133~151
  • 10S.H.S.Chee,J Han,K.Wang.RecTree:An efficient collaborative filtering method.In:Lecture Notes in Computer Science 2114.Berlin:Springer,2001.141~151

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部