期刊文献+

C^2C^4中无偏的最大纠缠基的构造 被引量:1

Construction of mutually unbiased maximally entangled bases in quantum system C^2C^4
下载PDF
导出
摘要 在两体空间C2C4上利用Pauli矩阵研究了最大纠缠基的具体形式,并给出了在C2C4系统中构造无偏基的方法以及充要条件.另外,利用一个特殊的过渡矩阵A,构造出了5组彼此无偏的最大纠缠基. Using the Pauli matrices,the explicit construction of maximally entangled bases in the bipartite quantum system C2C4 is studied in this paper.A method of constructing mutually unbiased maximally entangled bases in C2C4 is provided,and the necessary and sufficient conditions are given.Moreover,utilizing a special unitary matrix A,we construct five maximally entangled bases which are mutually unbiased each other.
作者 王天娇 南华
出处 《延边大学学报(自然科学版)》 CAS 2015年第2期132-135,共4页 Journal of Yanbian University(Natural Science Edition)
基金 延边大学科技发展项目(延大科合字[2013]第17号)
关键词 最大纠缠基 无偏基 Pauli矩阵 过渡矩阵 maximally entangled bases mutually unbiased bases Pauli matrices transition matrix
  • 相关文献

参考文献13

  • 1Wootters W K, Fields B D. Optimal state-determination by mutually unbiased measurements[J]. Ann Phys (NY), 1989,191 (2) :363-381.
  • 2Adamson D B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Phys Rev Lett, 2010,105..030406.
  • 3Brierley S, Weigert S, Bengtsson I. All mutually unbiased bases in dimension two to five[J]. Quantum In{orm Comput, 2010,10803-820.
  • 4Mcnulty D, Weigert S. The limited role of mutually unbiased product bases in dimension 6[J]. J Phys A.. Math Theor, 2012,45(10) 102001.
  • 5Bennett C H, Wiesner S J. Communication via one-and two-particle operators on Einstein-Podolsky-Posen states [J]. PhysRevLett, 1992,692881-2884.
  • 6Klimov A B, Syeh D, Sanchez-Soto L L, et al. Mutually unbiased bases and generalized Bell states[J]. Phys Rev A, 2009,79:052101.
  • 7雷丽霞,王天娇,南华.C^2C^6中的最大纠缠基与无偏基[J].延边大学学报(自然科学版),2014,40(4):311-313. 被引量:2
  • 8Caruso F, Bechmann-Pasquinucci H, Macchiavello C. Robustness of a quantum key distribution with two and three mutually unbiased bases[J]. Phys Rev A, 2005,72:032340.
  • 9Ghiu Iulia. Generation of all sets of mutually unbiased bases for three-qubit systems[J]. Phys Scr, 2013,T153: 014027.
  • 10杨强,陶元红,张军,南华.C^2C^3中无偏的不可扩展最大纠缠基[J].哈尔滨理工大学学报,2014,19(4):84-87. 被引量:3

二级参考文献29

  • 1ISHIZAKA S,HIROSHIMA T.Quantum Teleportation Scheme by Selecting One of Multiple Output Ports[J].Phys.Rev.A,2009,79:042306.
  • 2NOH C,CHIA A,NHA H,et al.Quantum Teleportation of The Temporal Fluctuations of Light[J].Phys.Rev.Lett.,2009,102:230501.
  • 3BARREIRO J T,WEI T C,KWIAT P G.Beating the Channel Capacity Limit for Linear Photonic Superdense Coding[J].Nature Phys.,2008,4:282-286.
  • 4BENNETT C H,DIVIVCENZO D P.Quantum Information and Computation[J].Nature,2000,404:247-255.
  • 5HORODECKI R,HORODECKI P,HORODECKI M.Quantum Entanglement[J].Rev.Mod.Phys.,2009,81:865.
  • 6BENNETT C H,WIESNER S J.Communication via One-and Two-Particle Operators on Einstein-Podolsky-Rosen States[J].Phys.Rev.Lett.,1992,69:2881-2884.
  • 7LI Z G,ZHAO M J,FEI S M,FAN H,LIU W M.Mixed Maximally Entangled States[J].Quant.Inf.Comput.,2012,12(1-2):63-73.
  • 8BENNETT C H,DIVIVCENZO D P,MOR T,et al.Unextendible Product Bases and Bound Entanglement[J].Phys.Rev.Lett.,1999,82:5385-5388.
  • 9CHEN B,FEI S M.Unextendible Maximally Entangled Bases and Mutually Unbiased Bases[J].Phys.Rev.A,2013,88(3):034301.
  • 10BRAVYI S,SMOLIN J A.Unextendible Maximally Entangled Bases[J].Phys.Rev.A,2011,84(4):042306.

共引文献3

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部