期刊文献+

一类具分布时滞的三阶非线性泛函微分方程的振动性和渐近性 被引量:4

Oscillatory Behavior and Asymptotic Behavior of Certain Third-Order Functional Differential Equations with Distributed Delays
下载PDF
导出
摘要 作为机械、电子振荡的数学模型——泛函微分方程的振动性研究在理论和实际中都有着重要意义.对于二阶泛函微分方程的振动性已经有了许多结果,但对于三阶中立型泛函微分方程的振动性研究结果却很少.利用广义Riccati变换和Hardy-Littlewood-Polya不等式,研究一类具分布时滞的三阶非线性泛函微分方程的振动性和渐近性,建立了该类方程的所有解振动或收敛于零的两个新的充分条件,推广和改进了一些文献中的结果. The research on oscillation for general mechanical and electronic vibration mathematical models,which are usually functional differential equations, has important implications in both theory and practice.There have been many results about the oscillation for second order functional differential equations, but there are few research results about the third order case.By means of the generalized Riccati transformation and Hardy-Littlewood-Polya inequality, this paper establishes several new oscillation criteria for certain third order functional differential equations with distributed delays, which generalize and improve some known results in the literature.
作者 林文贤
出处 《韩山师范学院学报》 2015年第3期1-9,共9页 Journal of Hanshan Normal University
基金 广东省高等教育教学改革项目(项目编号:GDJG20142396) 广东省高等学校特色创新项目(项目编号:2014GXJK125)
关键词 三阶泛函微分方程 分布时滞 振动性 渐近性 third order functional differential equation distributed delays oscillatory behavior asymptotic behavior
  • 相关文献

参考文献28

二级参考文献83

共引文献53

同被引文献57

  • 1林文贤.一类非线性偶数阶中立型方程的振动准则[J].工程数学学报,2005,22(1):159-162. 被引量:19
  • 2林文贤.一类中立型泛函微分方程的振动准则[J].数学的实践与认识,2005,35(6):211-215. 被引量:11
  • 3林文贤.一类具连续分布滞量的偶数阶微分方程的新振动性定理(英文)[J].辽宁师范大学学报(自然科学版),2006,29(4):394-396. 被引量:6
  • 4袁晖坪.行(列)对称矩阵的LDU分解与Cholesky分解[J].华侨大学学报(自然科学版),2007,28(1):88-91. 被引量:9
  • 5BEHIRY S H. Erratum : Solution of Nonlinear Fredholm Integro-Differential Equations Using a Hybrid of Block PulseFunctions and Normalized Bernstein Polynomials [J]. Journal of Computational and Applied Mathematics, 2016 , 2 9 (4 ):446-452.
  • 6SADOLLAH A, ESKANDAR H. Approximate Solving of Nonlinear Ordinary Differential Equations Using Least Square WeightFunction and Metaheuristic Algorithms [J]. Engineering Applications of Artificial Intelligence,2015,40(8) : 117 - 132.
  • 7BEHIRY S H. Solution of Nonlinear Fredholm Integro-Differential Equations Using a Hybrid of Block Pulse Functionsand Normalized Bernstein Polynomials [J]. Journal of Computational and Applied Mathematics- 2014,260(11) : 258 - 265.
  • 8刘兴元. 中立型非线性泛函差分方程三个正周期解的存在性[J] . 数学季刊,2015, 30(2): 172 - 183.
  • 9POLYANIN A D, ZHUROV A I. Exact Separable Solutions of Delay Reaction-Diffusion Equations and Other NonlinearPartial Functional-Differential Equations [J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(3) : 409-416.
  • 10NAVICKAS ZENONAS N , MINVYDAS R. Comments on a New Algorithm for Automatic Computation of SolitaryWave Solutions to Nonlinear Partial Differential Equations Based on the Exp-Function Method [J]. Applied Mathematicsand Computation, 2014, 243(11) : 419 - 425.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部