期刊文献+

基于自适应重启方法的快速压缩感知算法

The Fast Compressed Sensing Algorithm Based on Adaptive Restart Method
下载PDF
导出
摘要 NESTA是一种解决压缩感知问题的快速准确一阶优化算法。提出了一种自适应重启方法来提高NESTA算法的收敛速度。新方法自动检测目标函数在优化过程收敛速度减缓的趋势,重置算法的参数,并使算法从当前步骤重新开始运行。实验结果表明该方法能够显著提高经典算法的收敛速度,从而提升算法运行效率。 NESTA is a fast and accurate first-order optimization algorithm to solve problem of compressed sensing. The paper proposes an adaptive restart method to improve the con- vergence rate of NESTA. As object function decreases slowly in NESTA, this method can cope with it and significantly improve the convergence rate of the algorithm. Making the al- gorithm restart from current step, the adaptive restart strategy automatically detects the slow convergence rate of object function and resets the parameters of the algorithm. Exper- imental results show that the method can significantly improve the convergence rate of the classical algorithm, thereby enhance the efficiency of the algorithm.
出处 《工程地球物理学报》 2015年第4期556-560,共5页 Chinese Journal of Engineering Geophysics
基金 国家自然科学基金项目(编号:61102103) 中央高校基本科研业务费项目(编号:CCNU15A05022)
关键词 压缩感知 NESTA 梯度下降 图像重构 重启算法 收敛速度 compressed sensing NESTA gradient descent image reconstruction restartmethod convergence rate
  • 相关文献

参考文献13

  • 1Donoho D L. Compressed sensing[J]. IEEE Transac- tions on Information Theory, 2006, 52 (4) : 1289 -- 1306.
  • 2Mehmet Akakaya, Vahid Tarokh. A frame con- struction and a universal distortion bound for sparse representations [J]. IEEE Transactions on Signal Processing, 2008,56 (6) . 2443 -- 2450.
  • 3Babadi Behtash, Kalouptsidis Nicholas, Vahid Tar- okh. Asymptotic achievability of the eram6r-rao bound for noisy compressive sampling [J]. IEEE Transactions on Signal Processing, 2009,57 ( 3 ) : 1233 --1236.
  • 4Stephen Becket, J6r6me Bohin, Emmanuel J. Cand6s. Nesta: a fast and accurate first-order meth- od {or sparse recovery[J]. SIAM J Imaging Sci, 2011,4(1) :1--39.
  • 5Yang J, Zhang Y. Alternating direction algorithms for\ell 1-problems in compressive sensing[J]. SI AM journal on scientific computing, 2011, 33 (1): 250--278.
  • 6Yuan Xiaotong, Liu Xiaobai, Yah Shuicheng. Visual classification with multitask joint sparse representa tionFJ. IEEE Transactions on Image Processing, 2012,21 (10) : 4349 -- 4360.
  • 7Yang A Y, Sastry S S, Ganesh A,et al. Fast l-min imization algorithms and an application in robust face recognition., a review[C], 2010 -- 06 -- 15,2010 : 1849 --1852.
  • 8程村.基于边缘自适应小波变换的图像修复算法[J].工程地球物理学报,2013,10(4):576-582. 被引量:5
  • 9董承全,颜胜才,陈辉,孟军涛.图像识别技术在基桩质量检测中的应用研究[J].工程地球物理学报,2013,10(5):736-739. 被引量:7
  • 10Yu Nesterov. Smooth minimization of non smooth functions [J]. Mathematical Programming, 2005, 103(1): 127--152.

二级参考文献39

  • 1陈俊栋,粟健.表层直达波CT探测混凝土空洞的试验研究[J].工程地球物理学报,2009,6(S1):106-108. 被引量:1
  • 2汪雪林,刘忠轩,彭思龙.基于边缘自适应小波变换的低比特率图像压缩算法[J].中国图象图形学报(A辑),2005,10(2):149-157. 被引量:2
  • 3肖国强,刘天佑.声波法在大体积结构混凝土质量检测中的应用[J].工程地球物理学报,2004,1(5):430-434. 被引量:8
  • 4TB10218-2008铁路工程基桩检测技术规程[s].北京:中国铁道出版社.2008.
  • 5杨伦标 高仪英.模糊数学原理及应用[M].广州:华南理工大学出版社,2002..
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 7Chen S, Hong X, Harris C J. An orthogonal for- ward regression technique for sparse kernel density estimation [J]. Neurocomputing, 2008, 71 (4- 6) : 931-943.
  • 8Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to non-linear system identification [J]. International Journal of Control, 1989, 50(5): 1873-1896.
  • 9Rajan L J, Thomas R F. Comparison on of general- ized Gaussian and laplacian modeling in DCT image coding[J]. IEEE Signal Processing Letters,1995, B (5) : 81-82.
  • 10Stephan G M. Theory for multiresolution signal de- composition: The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1989, 11(7): 674-693.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部