期刊文献+

基于稀疏表示的目标跟踪算法

Target tracking algorithm based on sparse representation
下载PDF
导出
摘要 为了解决目标跟踪忽视背景信息的问题,运用非常稀疏的矩阵对目标与背景样本提取低维Haar特征,并将候选目标在过完备字典中进行稀疏表示,用块正交匹配追踪的方式对稀疏表示进行求解,通过残差对目标作最大似然估计,提高跟踪效果。实验结果表明,在光照变化、遮挡、复杂背景等情况下,基于稀疏表示的目标跟踪算法具有较高的鲁棒性,且在跟踪速度上有所提升。 In order to solve the defects of tracking algorithm which ignores the background information, a very sparse matrix is used to get low dimensional Haar feature of target and background, and the candidate target can be sparse representation in the over complete dictionary. Block orthogonal matching pursuit method is used to solve the sparse representation and get residual, then the maximum likelihood estimation is achieved. Experimental results show that the tracking method based on sparse representation still has very high robustness in illumination, occlusion and complex background conditions, and the tracking speed is improved.
出处 《桂林电子科技大学学报》 2015年第4期305-309,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61461010) 桂林电子科技大学研究生教育创新计划(GDYCSZ201413)
关键词 HAAR特征 背景信息 稀疏表示 块正交匹配 Haar feature background information sparse representation block orthogonal match
  • 相关文献

参考文献10

  • 1Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(1):210-227.
  • 2Mei Xue,Ling Haibin.Robust visual tracking and vehicle classification via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(11):2259-2272.
  • 3Li Haixi,Shen Chunhua,Shi Qinfeng.Real-time visual tracking using compressive sensing[C]//IEEE Conference on Computer Vision and Pattern Recognition,2011:1305-1312.
  • 4Mei Xue,Ling Haibin,Wu Yi,et al.Minimum error bounded efficient l1tracker with occlusion detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2011:1257-1264.
  • 5Bao Chenglong,Wu Yi,Ling Haibin,et al.Real time robust l1tracker using accelerated proximal gradient approach[C]//IEEE Conference on Computer Vision and Pattern Recognition,2012:1830-1837.
  • 6Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 7Candes E J,Tao T.Near-optimal signal recovery from random projections:universal encoding strategies[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 8Eldar Y C,Kuppinger P,Bolcskei H.Block-sparsesignals:uncertainty relations and efficient recovery[J].IEEE Transactions on Signal Processing,2010,58(6):3042-3054.
  • 9Zhang Kaihua,Zhang Lei,Yang M H.Real-time Compressive Tracking[M]//Fitzgibbon A,Lazebnik S,Perona P,et al.Computer Vision-ECCV 2012.[S.l.]:Springer Berlin Heidelberg,2012:864-877.
  • 10Gonzlez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007,236-257.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部