一类具有脉冲的二阶神经网络模型周期解的存在性
摘要
利用重合度理论和一些分析的技巧,讨论了一类受脉冲影响的非自治时滞神经网络模型,在某些特定的假设下获得了该模型周期解存在的充分条件,并通过一个具体的例子验证了结果的可靠性。
出处
《荆楚理工学院学报》
2015年第2期70-76,共7页
Journal of Jingchu University of Technology
参考文献9
-
1J J Hopfield. Neurons with graded response have collective computational properties like those of two - state neurons [ J ]. Proc. Nat. Acad. Sci. USA,1984,81:3 088-3 092.
-
2L O Chua, L Yang. Cellular neural networks : theory [ J]. IEEE Trans. Circuits and Systems, 1988,35 (10) : 1 257 - 1 272.
-
3Z J Gui, W G Ge. Existence and uniqueness of periodic solutions of non - autonomous cellular neural networks with impulses [J].Phys. Lett. A,2006,354:84-94.
-
4Z G Liu, L S Liao. Global stability analysis of impulsive Cohen - Grossberg neural networks with delays [ J ]. J. Math. Appl, 2004,290:247 - 262.
-
5Chert, J Ruan. Global stability analysis of impulsive Cohen - Grossberg neural networks with delay [ J ]. Phys. Lett. A ,2005, 345:101 - 111.
-
6Q H Zhou, J H Sun. Global exponential stability and periodic oscillations of reaction diffusion ban neural networks with peri- odic coefficients and general delay[J]. Int. J. Bifurcation and Chaos,2007,17 ( 1 ) : 129 - 142.
-
7柯云泉.一类扩张的细胞神经网络稳定性判别法(英文)[J].数学进展,2006,35(2):201-210. 被引量:3
-
8Y K Li ,L H Lu. Global exponential stability and existence of periodic solution of Hopfield -type neural networks with impul- ses[J].Phys. Lett. A,2004,333:62-71.
-
9Gaines R E, Mawhin J. Coincidence Degree and Nonlinear Differential Equations [ M ]. Berlin : springer - verlag, 1977.
二级参考文献15
-
1Zhang Yi,Pheng,A.H.,Kwong,S.L.,Convergence analysis of cellular neural networks with unbounded delay,IEEE Trans.Circuits Syst.,2001,48:680-687.
-
2Arik,S.,Tavsanoglu,V.,Equilibrium analysis of delayed CNNs.IEEE Trans,Circuits Syst.,1998,45:168-171.
-
3Civalleri,P.P.,Gilli,M.,Pandolfi,L.,On the stability of cellular neural networks with delay,IEEE Trans.Circuits Syst.,1993,40:157-165.
-
4Chua L.O.,Yang L.,Cellulal neure networks:theory,IEEE Trans.circuits.Syst.,19980,35(10):1257-1272.
-
5Chua L.O.,Yang L.,Cellulal neure networks:applications,IEEE Trans.Circuits.Syst.,1988b,35(10):1273-1290.
-
6Grassi,G.,On discrete-time cellular neural networks for associative memories,IEEE Trans.Circuits.Syts.,2001,48:107-111.
-
7Chua L.O.,Roska,T.,The CNN paradigm,IEEE Trans.Circuits.Syts.,1993,40:147-155.
-
8Cao Jinde,Global stability conditions for delayed CNNs,IEEE Trans.Circuits.Syts.,2001,48:1330-1333.
-
9Rosks,T.,Chua L.O.,Cellulal neure networks with nonlinear and delay-type template,Int.J.Circuit Theory Appl.,1994,20:469-481.
-
10Cao Jinde,Global asymptotic stability analysis of delayed cellular neural networks(in in Chinese),J.Electron,1999,22:253-258.
-
1刘晓君,李雪臣.一类非自治时滞差分方程解的全局渐近稳定性[J].河南教育学院学报(自然科学版),2001,10(2):1-3.
-
2唐晓伟.一类脉冲捕食微分系统周期解的局部稳定性分析[J].贵州大学学报(自然科学版),2016,33(3):1-3.
-
3余在正,蒋海军,胡成.具有变时滞的脉冲细胞神经网络的指数稳定性(英文)[J].新疆大学学报(自然科学版),2014,31(4):404-410.
-
4蒋明霞,陈珊.基于脉冲影响的向量抛物型方程的振动性[J].衡阳师范学院学报,2011,32(6):22-25.
-
5肖伟,闫萍,盛其荣.一个非线性时滞偏微分方程种群模型的稳定性与周期性[J].应用泛函分析学报,2010,12(2):125-131.
-
6邵远夫.有脉冲影响的中立型时滞Lotka-Volterra系统的正周期解的存在性(英文)[J].应用数学,2009,22(1):168-176.
-
7欧迪飞.非自治时滞Lotka-Volterra离散系统的持久性[J].湘潭大学自然科学学报,2003,25(2):15-17.
-
8刘卫国,罗交晚.非自治随机时滞微分方程概周期解的存在唯一性[J].数学年刊(A辑),2013,34(6):717-726. 被引量:1
-
9罗李平,杨柳,王艳群.基于脉冲影响的向量双曲型方程的振动性[J].浙江大学学报(理学版),2012,39(3):257-260.
-
10高明.变时滞脉冲BAM神经网络的稳定性(英文)[J].应用数学,2012,25(1):160-166. 被引量:1