期刊文献+

木素磺酸钠对铅酸电池低温性能影响详探 被引量:4

The detailed investigation of the effects of sodium lignosulfonate on the low temperature performance of lead-acid battery
下载PDF
导出
摘要 本文从多角度研究了木素磺酸钠(SLS)对电池性能的影响,详细比较了未加木钠及添加木钠的电池在低温容量、充电接受能力、不同温度下的1C高倍率放电性能等方面的差异;研究了放电电流及常温循环次数对两种电池低温容量的影响。实验结果表明,木钠能显著改善电池的低温性能,尤其是低温高倍率性能;随着放电电流和循环次数的增加,不加木钠的电池低温放电容量衰减较为严重;室温循环80次后,无木钠电池的低温容量衰减率达30%,比添加木钠的电池衰减率高出20%。 The effects of sodium lignosulfonate(SLS) on the performance of lead-acid battery were studied in many aspects. The low-temperature capacity, charge acceptance, 1C high rate discharge performance in different temperature were measured, the results were compared with the cells without SLS in detail, and the impacts of discharge current and cycle numbers on the low-temperature capacity were also explored. The results showed that the addition of SLS could improve the lowtemperature performance of cells, especially the high rate discharge performance, with the increase of discharge current and cycle numbers, the discharge capacity of the cell without SLS in lowtemperature declined dramatically, and the rate of capacity decay of the cell without SLS was 30 %, which was 20 % more than that of the cells with SLS after 80 cycles at room temperature.
出处 《蓄电池》 2015年第4期159-161,200,共4页 Chinese LABAT Man
关键词 铅酸电池 木素磺酸钠 低温 高倍率 容量衰减 活性物质利用率 硫酸铅 lead-acid battery sodium lignosulfonate low temperature high rate capacity loss active material utilization lead sulfate
  • 相关文献

参考文献4

二级参考文献19

  • 1[1]PAVLOV D, RUEVSKI S, NAIDENOV V, et al. Influence of temperature, current and number of cycles on the efficiency of the closed oxygen cycle in VRLA batteries [J]. J Power Sources, 2000,85:164—171.
  • 2[2]PAVLOV D, ROGACHEV T. Dependence of the phase composition of the anodic layer on oxygen evolution and anodic corrosion of lead electrode in lead dioxide potential region [J]. Electrochem Acta, 1978,23:1237—1242.
  • 3[3]PAVLOV D, DIMITROV M, PETKOVA G, et al. The effect of selenium on the electrochemical behaviour and corrosion of Pb-Sn alloys used in lead-acid batteries [J]. J Electrochem Soc, 1995,142:2 919—2 927
  • 4[4]NONOGUCHI M, ANDO K. High reliability stationary lead-acid storage battery [J]. Progress in Batteries and Solar Cells, 1978,1:128—134.
  • 5[5]RUETSCHI P, OCKERMAN J. Sealed cells with auxiliary electrodes [J]. Electrochem Technol, 1966,4:383—392.
  • 6[6]NIKOLOV I, PAPAZOV G, PAVLOV D, et al. Tungsten carbide Electrodes for Gas Recombination in Lead/Acid Batteries [J]. J Power Sources, 1990,31:69—77.
  • 7[7]PAPAZOV G, IKOLOV I, PAVLOV D, et al. Sealed lead/acid battery with auxiliary tungsten Carbide electrodes [J]. J Power Sources, 1990,31:79—88.
  • 8[8]PAPAXOV G, NIKOLOV I, PAVLOV D, et al. Lead-acid battery with WC recombination electrodes [J]. Bulletin of Electrochemistry, 1990,6:255—259.
  • 9[9]AKIRA S, MAKOTO Y, MASAO M. Japanese patent: 44—41 239,1969.
  • 10[10]DICK B H. Private communication. 1992.

共引文献21

同被引文献17

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部