期刊文献+

有色噪声下的平方根UKF在天文自主导航中的应用

Square-Root Unscented Kalman Filter for Satellite Autonomous Celestial Navi-gation System with Colored Measurement Noise
下载PDF
导出
摘要 针对由星敏感器和光学导航相机组成的卫星天文自主导航系统,传统的平方根UKF不能很好地解决测量噪声为有色噪声情况下的非线性滤波问题,导致导航系统的精度下降.为此,提出了一种有色噪声情况下的平方根UKF方法.同时,为了避免在数值计算的过程中,由于舍入误差而破坏误差协方差矩阵的正定性和对称性,在整个递推计算过程中,借鉴平方根Kalman滤波理论,采用协方差矩阵平方根进行递推计算,改善滤波算法的稳定性,协方差矩阵的平方根更新用cholesky分解和qr分解来计算.将该方法应用于卫星天文自主导航系统中,实验仿真结果表明,相对于传统的平方根UKF算法,所设计的平方根UKF算法能够很好地解决测量噪声为有色噪声情况下估计精度低问题. To address the satellite autonomous celestial navigation system based-on star sensor/optical camera, traditional square-root unscented Kalman filter can not well solve the nonlinear filtering problem with colored noise, which leads to the navigation system accuracy decreased. So a square-rootunscented Kalman filter (CSRUKF) applied to measurement system with colored noise is proposed in this paper. In addition, in order to avoid destructing the positive and symmetry of covariance matrix caused by the errors of numerical calculation during the filtering procedure, the square-root of covariance matrix is adopted throughout recursive calculation, which improves the stability of filter. The square-root of covariance matrix update is calculated by cholesky decomposition and qr decomposition. The method was applied to satellite autonomous navigation systems. The simulation results show that, compared to traditional SRUKF, this proposed SRUKF can well solve the problem of poor estimation accuracy in measurement system with colored noise.
出处 《计算机系统应用》 2015年第8期10-17,共8页 Computer Systems & Applications
基金 国家自然科学基金(61304237)
关键词 卫星天文自主导航系统 平方根UKF 有色噪声 估计精度 satellite autonomous navigation system square-root UKF colored noise estimation accuracy
  • 相关文献

参考文献10

二级参考文献29

  • 1王建琦,曹喜滨,孙兆伟.基于UKF算法的航天器自主导航研究[J].飞行力学,2004,22(2):41-44. 被引量:12
  • 2宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 3荣思远,穆荣军,崔乃刚.EKF容错滤波方法在磁测自主导航中的应用研究[J].电子学报,2006,34(12):2268-2271. 被引量:9
  • 4刘林.航天器轨道动力学[M].北京:国防工业出版社,2000.99-308.
  • 5Julier S, Uhlmann J, Durrant-Whyte H. A new approach for filtering nonlinear systems[C].Proc, of the American Control Conference, 1995 : 1628 - 1632.
  • 6Der Merwe R van, Wan E A, The unscented kalman filter for nonlinear estimation[C].Proc, of IEEE Symposium 2000(ASSPCC), Lake Louise, Alberta, Canada, 2000.
  • 7Kazufumi Ito, Xiong Kaiqi. Gaussian Filters for Nonlinear Filtering Problems[J]. IEEE Trans. on Automatic Control ,2000,45 (5):910-927.
  • 8Norgaard M, Poulsen N K, Ravn O. Advances in derivative Free state estimation for nonlinear systems [J]. Tech. Rep. IMM-REP-1998 - 15, Tech. Univ. of Denmark, 2000.
  • 9Haykin Simon. The unscented Kalman filter, Kalman filtering and neural networks[M]. Wiley Publishing, 2001.
  • 10Sorenson H W. Kalman filtering: theory and applications[M]. NewYork. IEEE Press ,1985.23 - 25.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部