期刊文献+

基于颜色与深度信息特征融合的一种多目标跟踪新算法 被引量:2

A novel multi-object tracking algorithm based on RJMCMC with RGB and depth information fusion
原文传递
导出
摘要 提出了一种基于颜色与深度信息特征融合的可逆跳的马尔科夫链蒙特长洛(RJMCMC)多目标跟踪算法。首先,融合彩色信息和深度信息对运动目标进行检测;然后,根据多目标检测的结果建立观测似然模型,并构建合理的状态转移模型;最后,通过RJMCMC粒子滤波算法实现多目标跟踪。实验结果表明,本文提出的多目标跟踪算法具有较强的鲁棒性,能够稳定的跟踪多目标,具有较高的准确率。 Multi-object tracking technique is one of the challenging issues in computer vision.In this paper,we propose a multi-object tracking algorithm based on RJMCMC with RGB and depth information fusion.Firstly,the moving objects are detected by fusing color information and depth information.Then,the observation likelihood model is established according to the result of object detection,and a reasonable state transition model is also established.Finally,the multi-object tracking result is obtained using RJMCMC particle filtering algorithm.Experimental results show that the proposed method has strong robustness.The algorithm can steadily track multiple targets and has higher accuracy.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第7期1342-1348,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(6143060) 中国博士后科学基金(2014M551081 2015T80249)资助项目
关键词 RGB-D数据 多目标检测 多目标跟踪 可逆跳的马尔科夫链蒙特长洛(RJMCMC)粒子滤波 RGB-D data multi-object detection multi-object tracking RJMCMC particle filtering
  • 相关文献

参考文献20

  • 1姜明新,王洪玉,王洁,王彪.基于ML和L2范数的视频目标跟踪算法[J].电子学报,2013,41(11):2307-2313. 被引量:10
  • 2Reuter S,Wilking B, Wiest J, et al. Real-time multi-object tracking using random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013,49 (4) : 2666- 2678.
  • 3姜明新,王洪玉,刘晓凯.基于多相机的多目标跟踪算法[J].自动化学报,2012,38(4):531-539. 被引量:22
  • 4Shao L, Han J, Xu D, et al. Computer vision for RGB-D sensors:Kinect and its applications[J]. IEEE Transactions on Cybernetics,2013,43(5) : 1314-1317.
  • 5Wang C, Liu H,Gao Y. Scene-adaptive hierarchical data association for multiple objects tracking signal[J]. IEEE Transactions on Processing Letters, 2014, 21 ( 6 ) : 697- 701.
  • 6丁欢,张文生.融合SPA遮挡分割的多目标跟踪方法[J].中国图象图形学报,2012,17(1):90-98. 被引量:3
  • 7欧阳宁,游锦海,莫建文,张彤.遮挡情况下的多目标跟踪算法[J].计算机应用研究,2010,27(5):1984-1986. 被引量:10
  • 8Sathyan T,Tat-Jun Chin,Arulampalam S,et al. A multiple hypothesis tracker for multitarget tracking with multiple simultaneous measurements[J]. IEEE Journal of Selected Topics in Signal Processing,20]3,7(3) :448-460.
  • 9Habtemariam B, Tharmarasa R, Thayaparan T, et al. A multiple-detection joint prebabilistic data association filter [J]. IEEE Journal of Selected Topics in Signal Process- inq, 2013,7(3) : 461-471.
  • 10ZHAO Zi-nan, Kumar M. An MCMC-based particle filter for multiple target tracking[A]. Proc. of 15th International Conference on Information Fusion (FUSION)[O1. 2012, 1676-1682.

二级参考文献61

  • 1ZHOU S K,CHELLAPPA R,MOGHADDAM B.Appearance trac-king using adaptive models in a particle filter[C]//Proc of the 6th Asian Conference on Computer Vision.2004.
  • 2NUMMIARO K,KOLLER-MEIER E,van GOOL L.Color features for tracking non-rigid objects special issue on visual surveillance[J].Chinese Journal of Automation,2003,29(3):345-355.
  • 3OBERTI F,CALCAGNO S,ZARA M,et al.Robust tracking of humans and vehicles in cluttered scenes with occlusions[C]//Proc of IEEE International Conference on Image Processing.2002:629-632.
  • 4COMANICIU D,MEER P.Mean Shift:a robust approach toward feature space analysis[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 5Reid D. An algorithm for tracking multiple targets [ J ]. IEEE Transactions on Automatic Control, 1979,24 (6) : 843-854.
  • 6Bar-Shalom Y, Fortmann T, Scheffe M. Joint probabilistic data association for multiple targets in clutter [ C ]//Proceedings of 1980 International Conference of Information Sciences and Systems, 1980.
  • 7Khan S M, Shah M. Tracking muhiple occluding people by localizing on multiple scene planes [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (3): 505-519.
  • 8Zhao T, Nevatia R. Tracking multiple humans in complex situations [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9) : 1208-1221.
  • 9Xu L, Puig P. A hybrid blob-and appearance-based framework for multi-object tracking through complex occlusions [ C ]// Proceedings 2nd Joint IEEE International Workshop on VS- PETS. Beijing, China: IEEE Press, 2005: 73-80.
  • 10Senior A, Hampapur A, Tian Y, et al. Appearance models for occlusion handling [ J ]. Image and Vision Computing, 2006, 24(11) : 1233-1243.

共引文献40

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部