期刊文献+

一种中心多孔缺陷的保偏光子晶体光纤 被引量:1

A type of centered porous-defected polarization maintaining photonic crystal fiber
原文传递
导出
摘要 探索了全反射型光子晶体光纤(PCF)中空气孔的排列形状和尺寸参数与双折射之间的关系,通过结构优化设计出一种双折射为3.4×10-3且单模工作的二孔中心缺陷实芯PCF,并采用多元非线性回归拟合的方法得到了这种PCF双折射的数值经验方程式,为保偏型PCF的研制提供了理论依据。 In standard fiber transmission systems,imperfections in the core-cladding interface introduce random birefringence that leads to light being randomly polarized.These problems with random birefringence in polarization maintaining(PM)fibers are overcome by deliberately introducing a larger uniform birefringence throughout the fiber.Current PM fibers realized by standard fiber technology include PNDA or bow-tie fibers,which achieve this goal by applying stress on the core region of a standard fiber.A modal birefringence up to 5×10^-4 may be readily obtained.However,this kind of fibers is so sensitive to the change of environment that the stability of systems can be seriously affected.In the other hand,PM photonic crystal fibers(PCFs)with asymmetric core designs,which offer resistance to the change of environment,may be used to introduce modal birefringence at least one order of magnitude larger than that for conventional PM fibers.This paper studies the relationship between the arranging shape and size parameters of air holes in total internal reflection(TIR)PCF and the birefringence.A kind of single-mode two-hole center-defected PCF with a birefringence of 3.4×10^-3 is designed through structure optimization.Meanwhile,numerical empirical equation for this kind of PCF is achieved by the method of multi-variant nonlinear regress fitting,which may offer theoretical reference for the manufacture of PM-PCF in future.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第7期1406-1411,共6页 Journal of Optoelectronics·Laser
基金 上海航天科技创新基金(SAST201449)资助项目
关键词 光子晶体光纤(PCF) 双折射 多孔缺陷 多元非线性回归拟合 经验方程 photonic crystal fiber(PCF) birefringence multi-hole defected multi-variant nonlinear regress fitting empirical equation
  • 相关文献

参考文献17

  • 1Noda J,Okamoto K,Sasaki Y. Polarization-maintaining fi- bers and their applications[J]. Lightwave Technology, Journal of, 1986,4(8) : 1071-1089.
  • 2宋海峰,龚华平,倪凯,董新永.基于保偏光纤模式干涉的应变传感器研究[J].光电子.激光,2013,24(6):1082-1085. 被引量:3
  • 3王剑锋,梁厚慧,金永兴,董新永,金尚忠,张在宣.基于保偏长周期光纤光栅的光纤环镜传感器[J].光电子.激光,2013,24(6):1037-1041. 被引量:4
  • 4Yu Q, Bao X, Chen L. Temperature dependence of Bril- Iouin frequency, power,and bandwidth in panda, bow-tie, and tiger polarization-maintainingfibers [J]. Optics Let- ters, 2004,29(1) : 17-19.
  • 5Suzuki K, Kubota H, Kawanishi S,et al. Optical properties of a low-loss polarization-maintaining photonic crystal fi- ber[J]. Optics Express,2001,9(13) :676-680.
  • 6Dong X,Tam H Y, Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer[J]. Applied Physics Let- ters, 2007,90(15) : 151113.
  • 7Yue Y, Kai G,Wang Z,et al. Highly birefringent elliptical- hole photonic crystal fiber with squeezed hexagonal lat- tice[J]. Optics letters,2007,32(5) : 469-471.
  • 8Chen D,Shen L. Ultrahigh birefringent photonic crystal fi- ber with ultralow confinement Ioss[J]. Photonics Technol- ogy Letters, IEEE,2007,19(4) : 185-187.
  • 9Sun Y S, Chau Y F, Yeh H H, et al. High birefringence photonic crystal fiber with a complex unit cell of asym- metric elliptical air hole cladding [J]. Applied Optics, 2007,46(22) : 5276-5281.
  • 10Yang T J, Shen L F, Chau Y F, et al. High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding[J-. Optics Communica- tions, 2008,281 (17) : 4334-4338.

二级参考文献32

  • 1周赢武,高侃,黄锐,耿建新,方祖捷.保偏光纤长周期光栅特性的研究[J].中国激光,2004,31(9):1103-1106. 被引量:3
  • 2Rao Y J,Wang Y P,Ran Z L,et al. Novel fiber-optic sen- sors based on long-period fiber gratings written by high- frequency 002 laser pulses [J]. Journal of Lightwave Technology, 2003,21(5) : 1320-1323.
  • 3Kurkov A S,Douay M,Duhem O,et al. Long period fiber grating as a Wavelength selective polarization element [J]. Electronics Letters, 1997,33(7) : 616-617.
  • 4Deparis O, Kiyan R, Vasliev S A, et al. Polarization- maintaining fiber Bragg gratings for wavelength selection in actively mode-locked Er-doped fiber lasers[J]. IEEE Photon. Technol. Lett., 2001,13 (4) : 284-286.
  • 5Ortega B. Dong I,Liu W F,et al. High-performance opti- cal fiber polarizers based on long-period gratings in bire- fringent optical fibers[J]. IEEE Photon. Technol. Lett., 1997,9(10) :1370-1372.
  • 6Lee S, Khosravani R, Peng J, et al. Adjustable compen- sation of polarization mode dispersion using a high-bire- fringence nonlinearly chirped fiber Bragg grating[J]. IEEE Photon. Technol. Lett., 1999, ].1 (10) : 1277-1279.
  • 7Frazao O, Marques B V, Jorge P, et al. High birefringence D-type fiber loop mirror used as refractometer[J]. Sen-sor and ActuatorsB: Chemical, 2008,135 : 108-111.
  • 8Zhao C L,Zhao J R,Jin W,et al. Simultaneous strain and temperature measurement using a highly birefringence fi- ber loop mirror and a long-period grating written in a photonic crystal fiber[J]. Optics Communication, 2009, 282:4077-4080.
  • 9Venugopalan T,Sun T, Grattan K T V. Long period grat- ing-based humidity sensor for potential structural health monitoring[J]. Sensors and Actuators A: Physical, 2008, 148(4) :57-62.
  • 10Viegas D, Hernaez M, Goicoechea J, et al. Simultaneous measurement of humidity and temperature based on an Si02-nanospheres film deposited on a long-period grating in-line with a fiber Bragg grating[J]. IEEE Sensors Jour- nal,2011,11(1) :162-166.

共引文献5

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部