期刊文献+

介质阻挡放电分解正癸烷 被引量:1

Decomposition of n-Decane with Dielectric Barrier Discharges
下载PDF
导出
摘要 挥发性有机化合物(VOCs)是引起雾霾天气的主要物质之一。采用常压介质阻挡放电对正癸烷的分解进行了研究,探讨了正癸烷在不同能量密度下转化率、产物生成情况及正癸烷的分解机理。研究结果表明:随着能量密度增加,正癸烷转化率逐步增加,当能量密度为225J·L^-1时,正癸烷转化率高达80%。正癸烷分解总的碳平衡达到了90%,CO和CO2的选择性为74%,n-癸酮的选择性为15%。颗粒物产物的直径分布范围为50-200nm,浓度范围为10^3~10^6个·cm^-3。 Volatile organic compounds (VOCs) are major chemicals causing haze. The decomposition of n-decane (as a model VOCs) was studied using atmospheric dielectric barrier discharges. The influence of energy density on n-decane conversion, particle products and decomposition mechanism were investigated. It is found that the conversion rate increases gradually with the increase of energy density, n-Decane conversion rate was 80% at an energy density of 225 J.L^-1. The total carbon balance is around 90% and the selectivity of CO/CO2 and n-decanones are 74% and 15%, respectively. The particles from n-decane decomposition are within a diameter range of 50-200 nm and a concentration range of 10^3-10^6 cm^-3.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第4期978-984,共7页 Journal of Chemical Engineering of Chinese Universities
基金 浙江省自然科学基金(LY13B070004) 国家自然科学基金项目(51206146) 杭州市科技计划项目(20130533B33)
关键词 介质阻挡放电 正癸烷 COX 颗粒物 分解机理 DBD n-decane COx particle decomposition mechanism
  • 相关文献

参考文献21

  • 1Stanley E,Manahan B.Environmental chemistry[M].New York:CRC Press LLC,2000.
  • 2Khan F I,Ghoshal A K.Removal of volatile organic compounds from polluted air[J].Journal of Loss Prevention in the Press Industries,2000,13(6):527-545.
  • 3Kim H H.Nonthermal plasma processing for air-pollution control:a historical review,current issues,and future prospects[J].Plasma Processes and Polymers,2004,1(2):91-110.
  • 4Chen H L,Lee M L,Chen S H,et al.A removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems:a review of the performance enhancement mechanisms,current status,and suitable applications[J].Environmental Science&Technology,2009,43(7):2216-2227.
  • 5Lu B,Zhang X,Yu X,et al.Catalytic oxidation of benzene using DBD corona discharges[J].Journal Hazardous Materials,2006,1(137):633-637.
  • 6Malik M A,Minamitani Y,Schoenbach K H.Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds(VOCs)in a plasma catalytic reactor[J].Transactions on Plasma Science,2005,33(1):50-56.
  • 7Kim H H,Ogata A,Futamura S.Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds[J].Journal of Physics D:Applied Physics,2005,38(8):1292-1300.
  • 8Delagrange S,Pinard L,Tatibouet J M.Combination of a non-thermal plasma and a catalyst for toluene removal from air:manganese based oxide catalysts[J].Applied Catalysis.B:Environmental,2006,68(3-4):92-99.
  • 9Chae J O,Demidiouk V,Yeulash M,et al.Experimental study for indoor air control by plasma-catalyst hybrid system[J].Transactions on Plasma Science,2004,32(2):493-497.
  • 10Chang M B,Lee H M.Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment[J].Catalysis Today,2004,89(1-2):109-115.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部