期刊文献+

天然纤维素/PVA复合水凝胶的形成机理及力学性能研究 被引量:2

Preparation and Mechanical Properties of Natural Cellulose/PVA Composite Hydrogels
下载PDF
导出
摘要 为提高聚乙烯醇(PVA)水凝胶的力学性能,利用Na OH/尿素溶剂,通过物理交联循环冷冻-解冻法,制备了α-纤维素(α-CE)/PVA复合水凝胶。红外光谱,扫描电镜结果表明α-CE与PVA水凝胶基体形成互穿交联网状结构。研究发现α-CE与PVA分子链上的羟基间所形成的氢键使两者牢固结合。力学性能测试表明,复合水凝胶的力学性能得到了大幅度提高,当α-CE含量为4%(wt)时,复合水凝胶的拉伸强度以及在压缩型变量60%下的压缩应力分别由0.09和0.07 MPa提高到0.64和0.52 MPa,比纯PVA水凝胶提高了611%和643%。此外发现,α-CE能明显增强PVA水凝胶的弹性及压缩后的形变回复能力。 α-cellulose (α-CE) / poly(vinyl alcohol)(PVA) composite hydrogels were prepared via a repeated freezing and thawing method using NaOH/urea as a solvent to improve mechanical properties ofPVA hydrogels FT-IR and SEM results demonstrate that α-CE and PVA form a cross-linked network structure, which is tightly interconnected through hydrogen bond interaction between the two chemicals. This network structure can strongly enhance the mechanical properties of PVA hydrogels. The tensile strength of the α-CE/PVA composite hydrogels increased by 611% (from 0.09 MPa to 0.64 MPa) with 4%(wt) α-CE, and the compressive stress at 60% compressive deformation improved by 643% (from 0.07 MPa to 0.52 MPa). In addition, α-CE is also beneficial to the elasticity of PVA hydrogels. The PVA hydrogels show better shape recovery with the incorporation of α-CE.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第4期1003-1009,共7页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(51273161)
关键词 聚乙烯醇(PVA) Α-纤维素 复合水凝胶 互穿网状结构 力学性能 形变回复能力 poly(vinyl alcohol) (PVA) α-cellulose composite hydrogels interpenetrating network structure mechanical properties shape recovery
  • 相关文献

参考文献2

二级参考文献23

  • 1[1]Hoffman AS.Applications of thermally reversible polymers and hydrogls in therapeutics and diagnostics[J].J Control Release,1987,5(6):297-305.
  • 2[3]Kim S J.Park S J,Kim S L.Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly (N-isopropylacrylamide)[J].React Funct Polym,2003,55(1):61-67.
  • 3[4]Takata S I,Suzuki K.Dependence of shriking kinetics of poly (N-isopropylacrylamide) gels on preparation temperature[J].Polymer,2002.43(10):3101-3107.
  • 4[5]Xue W,Champ S.Rapid swelling and deswelling in cryogels of crosslinked poly (N-isopropylacrylamide-co-acrylic acid)[J].Eur Polym J,2004,40(3):467-476.
  • 5[6]Schild H G.Poly (N-isopropylacrylamide):experiment,theory and application[J].Prog Polym Sci,1992,17(2):163-249.
  • 6[7]Ulanski P,Janik L,Rosiak J M.Radiation formation of polymeric nanogels[J].Radiat Phys Chem,1998,52(6):289-294.
  • 7[8]Wu J Y,Liu S Q.Evaluating proteins release from,and their interactions with,thermosensitive poly (N-isopropylacrylamide) hydrogels[J].J Control Release,2005,102(2):361-372.
  • 8[9]Dong L C,Hoffman A S.Thermally reversible hydrogels:immobilization of enzymes for feedback reaction control[J].J Control Release,1986,4(3):223-227.
  • 9[11]Berger J,Reist M,Mayer J M.Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications[J].Eur J Pharm Biopharm,2004,57(1):19-34.
  • 10Balandin A A,Ghosh S,Bao W Z, et al.Superior Thermal Conductivity ofSingle-Layer Graphene[].Nano Letters.2008

共引文献10

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部