期刊文献+

On the Tangent Bundle of a Hypersurface in a Riemannian Manifold

On the Tangent Bundle of a Hypersurface in a Riemannian Manifold
原文传递
导出
摘要 Let (Mn, g) and (N^n+1, G) be Riemannian manifolds. Let TMn and TN^n+1 be the associated tangent bundles. Let f : (M^n, g) → (N^+1, G) be an isometrical immersion with g = f^*G, F = (f, df) : (TM^n,g) → (TN^n+1, Gs) be the isometrical immersion with g= F*Gs where (df)x : TxM → Tf(x)N for any x∈ M is the differential map, and Gs be the Sasaki metric on TN induced from G. This paper deals with the geometry of TM^n as a submanifold of TN^n+1 by the moving frame method. The authors firstly study the extrinsic geometry of TMn in TN^n+1. Then the integrability of the induced almost complex structure of TM is discussed.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第4期579-602,共24页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.61473059) the Fundamental Research Funds for the Central University(No.DUT11LK47)
关键词 HYPERSURFACES Tangent bundle Mean curvature vector Sasaki metric Almost complex structure Kghlerian form Riemann曲面 子流形 切丛 等距浸入 几何形状 TMN 活动标架法 近复结构
  • 相关文献

参考文献17

  • 1Deshmukh~ S., AI-Odan, H. and Shaman, T. A., Tangent bundle of the hypersurfaces in a Euclidean space, Acta. Math. Acad. Paedagog. Nyhdzi (N.S.), 23(1), 2007, 71 87.
  • 2Klingenberg, W. and Sasaki, S., On the tangent sphere bundle of a 2-sphere, TohSku Math. J., 27, 1975, 49 56.
  • 3Konno, T., Killing vector fields on tangent sphere bundles, Kodai Math. J., 21, 1998, 61-72.
  • 4Konno, T. and Tanno S., Geodesics and Killing vector fields on the tangent sphere bundle, Nagoya Math. J., 151, 1998, 91-97.
  • 5Kowalski, O., Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold, J. Reine Angew. Math., 250, 1971, 124-129.
  • 6Miyaoka, R., Complete hypersurfaces in the space form with three principal curvatures, Math. Z., 179, 1982, 345-354.
  • 7Munteanu, M. I., Cheeger Gromoll type metrics on the tangent bundle, Sci. Ann. Univ. Agric. Sci. Vet. Mcd., 49(2), 2006, 257 268.
  • 8Munteanu, M. I., Some aspects on the geometry of the tangent bundles and tangent shpere bundles of a Riemannian manifold, Mediterr. J. Math., 5, 2008, 43-59.
  • 9Musso, E. and Tricerri, F., Riemannian metrics on tangent bundles, Ann. Math. Pura Appl., 150(4), 1988, 1-20.
  • 10Nagano, T., Isometries on complex-product spaces, Tensor, New Series, 9, 1959, 47-61.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部