期刊文献+

基于微分器的轨迹线性化控制方法及其应用 被引量:5

Control method and applications of robust trajectory linearization via nonlinear differentiators
下载PDF
导出
摘要 针对当前轨迹线性化控制(TLC)方法对系统中的不确定性存在鲁棒性不足的问题,受非线性跟踪微分器设计思路的启发,提出了一种基于微分器设计原则的轨迹线性化控制方法.首先,引入二阶线性微分器(SOLD)的概念,通过理论分析指出了当前轨迹线性化控制方法中采用一阶惯性+伪微分器求取标称指令的微分信号时,会存在与二阶线性微分器类似的峰值现象,随后利用韩式跟踪微分器(TD)求取标称指令及其微分信号,避免了该现象的同时又赋予了系统在控制量的约束范围内调节响应快慢的能力;其次,通过构造期望的闭环系统,跟踪误差动态,直接获取线性时变(LTV)系统的控制量,使得参数整定不再依赖于并行微分(PD)谱理论,在此基础上,将混合微分器(HD)的非摄动形式等价为期望的闭环系统跟踪误差动态,以提升轨迹线性化控制方法的鲁棒性,同时借助Lyapunov稳定性理论证明了受扰系统的跟踪误差最终一致有界;最后,利用所提出的轨迹线性化控制方法设计了高超声速飞行器的姿控系统并进行了相应的仿真.结果表明:存在大范围气动参数摄动的情况下,本方法仍具有较好的控制性能及抗干扰能力,能够满足高超声速飞行器快时变、高精度以及强鲁棒的控制需求. Considering the lack of enough robustness against uncertainties in conventional trajectory linearization control (TLC) method, an improved robust control method was proposed, based on the design principle of nonlinear differentiators. Firstly, via introducing the concept of second-order linear differentiator (SOLD) , it was indicated that peaking phenomenon which was similar with using high-gains in SOLD would emerge during the transient profile of differentiation of the nominal command in the existing TLC. And then, tracking differentiator (TD) was used to produce the nominal command and its derivative, peaking phenome- non was totally eliminated and the ability of adjusting the response speed of closed-loop system under the physical limitations was endowed simultaneously. Secondly, by constructing the desired tracking error dynamics of closed-loop system, the control law of the linear time-varying (LTV) system could be directly obtained, PDspectrum theorem and real time tuning of the time varying bandwidth (TVB) of TLC were both avoided. Meanwhile, by utilizing the non-perturbation form of hybrid differentiator (HD) as the desired error dynamics of closed-loop system, the robustness of the system was thus enhanced. In addition, the boundedness of the tracking error in interference system was proved by Lyapunov theory. Finally, the proposed method was applied to the attitude tracking problem of hypersonic vehicle. The simulation results demonstrate the proposed method can still exhibit better control performance and anti-interference capability even if there exist large uncertainties in the aerodynamic parameters, thus the effectiveness and robustness of the control scheme is validated.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第7期1259-1268,共10页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61175084) 长江学者和创新团队发展计划(IRT 13004) 航空科学基金(2014ZA51002)
关键词 轨迹线性化控制方法 二阶线性微分器 非线性跟踪微分器 混合微分器 高超声速飞行器 trajectory linearization control method second-order linear differentiator nonlinear trackingdifferentiator hybrid differentiator hypersonic vehicle
  • 相关文献

参考文献17

二级参考文献60

  • 1韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:405
  • 2韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490. 被引量:229
  • 3朱亮,姜长生,陈海通,方炜.基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制[J].宇航学报,2006,27(3):338-344. 被引量:26
  • 4宋健 韩京清 等.断续系统最速控制的综合.1962年全国控制理论“龙王庙”会议论文[M].,..
  • 5宋健 韩京清.线性最速控制系统的分析与综合理论[J].数学进展,1962,5(4):264-284.
  • 6Isidori A.非线性控制系统(第三版)[M].北京:电子工业出版社,2005.
  • 7Sastry S S, Isidori A. Adaptive control of linearization systems[J]. IEEE Trans . on Automatic Control, 1989, 34: 1123-1131.
  • 8Liu Y, Wu X F, Zhu J J. Omni-directional mobile robot controller designed by trajectory linearization[C] // Proceedings of the American Control Conference, Denver: IEEE, 2003:3423 - 3428.
  • 9Bevacqua T, Best E, Hulzenga A, et all. Improved trajectory linearization flight controller for Reusable Launch Vehicles[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno: AIAA, 2004.1 - 16.
  • 10Liu Y, Huang R, Zhu J. Adaptive neural network control based on trajectory linearization control[C]//The Sixth World Congress on Intelligent Control and Automation, 2006. 417-421.

共引文献417

同被引文献72

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部