期刊文献+

基于非参数回归的风电场理论功率计算方法 被引量:23

The Wind Farm Theoretical Power Calculation Method Research Based on Non-Parameter Regression
下载PDF
导出
摘要 风电场理论功率计算可用于恢复风电场限电等非正常功率数据,对于恢复历史功率数据、建立风电场功率统计预测模型、计算限电量和电力交易结算等具有重要意义。在分析大量风电场实际功率数据的基础上,对于无完整调度控制指令记录和风机运行记录的风电场,根据其实际运行状态和风机类型,合理设置筛选阈值,剔除了限电等非正常功率数据;根据实际功率曲线的特点,采用风向、气压等气象数据对样本数据进行划分;然后采用非参数回归方法拟合风机功率曲线并计算单机理论功率,根据相关系数加权方法修正和补齐缺失功率数据,提出基于非参数回归的风电场理论功率计算方法,并建立完整的理论功率计算模型。通过实际风电场测试,验证了方法的有效性和正确性,并与风电场发电能力验证方法的计算结果进行比较,验证所提方法的先进性。 The theoretical power calculation of wind farms can recover the abnormal wind power data, such as curtailed wind farm output, and plays an important role in wind power prediction model building, historical data recovery and electricity transaction settlement etc. In this paper, based on a lot of wind power data analysis, filter thresholds were set up according to the wind farm operation state and wind turbine types to delete the abnormal data, like curtailed output data. Non-parameter regression method was employed to fit the power curve of wind turbines. Fault and missing power data was modified and added using real wind speed data and correlation coefficient weights. The wind farm theoretical power calculation method based on Non-parameter regression was proposed in this paper. In addition, a whole theoretical power calculation model was built. According to the case study, it can correctly work out the theoretical output of wind farm; and comparing with park power verification(PPV) method, the results showed that this proposed method was better.
出处 《电网技术》 EI CSCD 北大核心 2015年第8期2148-2153,共6页 Power System Technology
基金 国家重点基础研究发展计划项目(973项目)(2012CB215101)~~
关键词 风力发电 风电场理论功率 非参数回归 理论功率计算 相关系数加权 wind power generation wind farm theoretical power non-parameter regression theoretical power calculation correlation coefficient weights
  • 相关文献

参考文献15

  • 1于士航.2014年我国风电新增装机容量创历史新高[EB/OL].2015-02-12[2015-03-31].http://www.gov.cn/xinwen/2015-02/12/content_2818566.htm.
  • 2国家能源局.2014年风电产业监测情况[EB/OL].2015-02-12[2015-03-31].http://www.nea.gov.cn/2015-02/121c_133989991.htm.
  • 3中国可再生能源发展战略研究项目组.中国可再生能源发展战略研究丛书综合卷[M].北京:中国电力出版社,2008.
  • 4国家发展和改革委员会.可再生能源中长期发展规划[R].2007.
  • 5Yianis G, Dimitis G, Vaggelis P. Coupling ofa mesoscale atmospheric prediction system with a CFD microclimate model for production forecasting of wind farms in complex terrain[C]//European Wind Energy Conference&Exhibition. Athens, Greece: EWEA, 2006: 1-10.
  • 6Giebel G, Badger J, Marti Perez I. Short-term forecasting using advanced physical modelling-the results of the anemos project results from mesoscale, microscale and CFD modeling[C]//European Wind Energy Conference. Athens, Greece: EWEA, 2005: 1-29.
  • 7Smith B, Link H, Randall G, et al. Applicability of nacelle anemometer measurements for use in turbine power performance tests[C]//Wind Power 2002 Conference. Oregon, USA: AWEA, 2002: 1-20.
  • 8Hossieni A, Rasouli V, Rasouli S. Wind energy potential assessment in order to produce electrical energy for case study in Divandareh, Iran [C]//2014 international Conference on Renewable Energy Research and Application(ICRERA). Milwaukee, WI: IEEE, 2014: 133-137.
  • 9姜文玲,冯双磊,孙勇,王勃,汪宁渤,郭凌旭.基于机舱风速数据的风电场弃风电量计算方法研究[J].电网技术,2014,38(3):647-652. 被引量:31
  • 10任华,姚秀萍,张新燕,周专,王维庆.风电场弃风电量统计方法研究[J].华东电力,2013,41(10):2148-2152. 被引量:20

二级参考文献52

  • 12011年风电限电情况初步统计[J].风能,2012(4):38-39. 被引量:9
  • 2全球风电市场发展报告2012[J].风能,2013(4):32-36. 被引量:5
  • 3杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 4KariniotakisG, MayerD, MoussafirJ. ANEMOS: development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms[C]. European Wind Energy Conference & Exhibition, Madrid, Spain, 2003.
  • 5Giebel G, Landberg L, Kariniotakis G. State-of-the-art on methods and software tools for short-term, prediction of wind energy production[C]. European Wind Energy Conference & Exhibition, Madrid, Spain, 2003.
  • 6Yiannis G, Dimitis G, Vaggelis P. Coupling of a mesoscale atmospheric prediction system with a CFD microclimatic model for production forecasting of wind farms in complex terrain: test case in the island of evia[C]. European Wind Energy Conference & Exhibition, Athens, Greece, 2006.
  • 7Giebel G, Badger J, Marti Perez I. Short-term forecasting using advanced physical modeling-the results of the anemos project results from mesoscale, microscale and CFD modelling[C]. European Wind Energy Conference & Exhibition, Athens, Greece, 2006.
  • 8Waldl H, Giebe G. The quality of a 48-hours wind power forecast using the german and danish weather prediction model[C]. Wind Power for the 21st Century, EUWEC Special Topic Conference, Kassel, Germany, 2000.
  • 9Landberg L. Short-term prediction of local wind conditions [D]. Roskilde.. Risc NationalLaboratory, 1994.
  • 10Focken U, Lange M, Waldl P. Previento-a wind power prediction system with an innovative upscaling algorithm[C]. 2001 European Wind Energy Association Conference EWEC'01, Copenhagen, Denmark, 2001.

共引文献315

同被引文献312

引证文献23

二级引证文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部