期刊文献+

FIR滤波器设计:基于PSO优化算法的频率采样法

Design of FIR Filter:Based on the Frequency Sampling Technique of Particle Swarm Optimization(PSO)
原文传递
导出
摘要 粒子群优化算法(PSO)是一种具有智能优化进化计算技术。该算法基于对鸟群活动行为观察,利用群体中的个体对信息的共享这一特点,使整个群体活动的问题求解空间中产生的一种从无序到有序的演化过程,从而获得最优解。文中介绍了PSO在频率采样技术中的应用。结合PSO算法,将滤波器过渡带样本值作为优化变量,通过PSO算法确定的频率过渡带样本值是最优的。 Particle swarm optimization(PSO) is a kind of intelligent optimization and evolutionary computation technique. The algorithm is based on the observation of bird flock's activities, With the characteristic of information sharing between individuals and groups, promoting the solution space of the entire group activities to produce a process from disordered state to ordered. From which we can achieve the optimum solution. This paper introduces the application of PSO into frequency sampling technique. Combined with the PSO algorithm, and setting the filter ‘s value of transition bands sample as optimal variables, then we can draw a conclusion that the value of transition bands sample determined by the PSO algorithm is optimum.
出处 《电子技术(上海)》 2015年第7期53-55,52,共4页 Electronic Technology
基金 湖南省自然科学基金项目"面向完全植入式医学电子系统应用的模拟小波理论与方法(11JJ3078)" 大学生研究性学习和创新性实验计划项目基金(201410543002)
关键词 滤波器 PSO 采样 过渡带样本 filter PSO sampling transition bands sample
  • 相关文献

参考文献4

  • 1张葛祥,金炜东,胡来招,靳蕃.基于频率采样技术的FIR数字滤波器优化设计[J].电路与系统学报,2004,9(4):110-114. 被引量:11
  • 2Etter D M, Masukawa M M. A corn parison of algorithms for adaptive estimation of the time delay between sampled signals. In: Proc IEEE Int ConfASSP, 1981. 1253~1256.
  • 3IngleVKProakisJG.数字信号处理及其MAT[J].LBE实现.陈怀琛,王朝英,高西全,等译.北京:电子工业出版社,1998.208.254.
  • 4高西全,丁玉美.数字信号处理第三版[M].西安电子科技大学出版社,2014:217.229.

二级参考文献6

  • 1Jin Weidong, Li Chongwei, Hu Fei, Jin Fan. A study on Intelligent Computation of Methods of Optimization for Train [A] Proceedings of 2000 International Workshop on Autonomous Decentralized System [C]. Cheng Du, Piscataway: IEEE Press, 2000: 97-102.
  • 2Zhang Gexiang, Jin Weidong, Hu Laizhao, Multi-criterion satisfactory optimization method for designing IIR digital filters [A]. Proceedings of International Conference on Communications Technology [C]. Beijing, Piscataway: IEEE Press, 2003: 1484-1491.
  • 3Hey T. Quantum Computing: an introduction [J]. Computing & Control Engineering Journal, 1999, 10(3): 105-112.
  • 4Narayanan A, Moore M. Quantum-inspired genetic algorithm [A]. Proceedings of IEEE International Conference on Evolutionary Computation [C]. Nogoya, 1999, 1999: 61-66.
  • 5Han K H, Park K H, Lee C H, Kim J H. Parallel quantum-inspired genetic algorithm for combinatorial optimization problems [A]. Proceedings of IEEE International Conference on Evolutionary Computation [C]. Seoul, 2001, Piscataway: IEEE Press, 2001: 1442-1429.
  • 6Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization [J]. IEEE Trans. On Evolutionary Computation, 2002-12, 6(6): 580-893.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部