期刊文献+

菲涅尔聚光PV/T系统输出特性分析及优化 被引量:3

Structure Optimization and Analysis of Output Characteristics of Fresnel Concentrating Photovoltaic/Thermal System
原文传递
导出
摘要 针对菲涅尔聚光引起的砷化镓电池温度分布不均问题,本文提出水冷螺旋式微通道散热结构,冷却GaAs电池,研究微通道长度、PCB板面积和流体入口速度对电池温度、出口流体温度及太阳能电池的光热、光电及综合效率的影响,并进行结构优化,结果表明,对于本文所研究单片砷化镓电池,选择面积为127×127 mm^2的PCB板,流道长度为6圈时的螺旋式微通道冷却结构换热效果最佳,且若得到可应用于膜蒸馏苦咸水淡化系统热源的65~70℃出口流体,入口流体速度应控制在0.52~0.58 m/s内,本文为菲涅尔高倍聚光PV/T冷却系统的换热特性试验研究与应用提供了理论基础。 Concerning the problem of non-uniform temperature of GaAs solar cell module in a new Fresnel three-stage high-concentration Photovoltaic/Thermal system,Helix microchannels cooling structure be designed using for cooling GaAs solar cell.And on this basis influencing factors of battery temperature,outlet fluid temperature,thermal efficiency and comprehensive efficiency can be investigated including the length of the microchannel,PCB area and fluid inlet velocity,meanwhile the structure be optimized,and the results show that for the monolithic GaAs cell the heat transfer effect is best for PCB board area of 127×127,and he helix microchannels cooling structure with flow channels length of 6 lap in this article,and if it can be used in membrane distillation desalination of brackish water system of heat of 65 ~ 70℃ outlet fluid,the inlet fluid velocity should be controlled within 0.52 ~ 0.58 m/s.The study can provide theoretical bases for heat transfer characteristics experimental study of the cooling system and the application in Fresnel high concentrated PV/T.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第8期1633-1637,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51464011) 内蒙古自然科学基金(No.2015MS0542)
关键词 PV/T 菲涅尔聚光 输出特性 微通道冷却 结构优化 PV/T fresnel concentrating system output characteristics microchannel cooler structure optimization
  • 相关文献

参考文献8

  • 1Green M A, Emery K, Hishikawa Y, et al. Solar Cell Effi- ciency Tables (Version 45) [J]. Progress in Photovoltaics: Research and Applications, 2015, 23(1): 1 9.
  • 2王子龙,张华,李烨.高倍聚光下三结砷化镓电池温度特性的实验研究[J].太阳能学报,2013,34(4):664-669. 被引量:8
  • 3Royne A, Dey C J, Mills D R. Cooling of Photovoltaic Cells Under Concentrated Illumination: a Critical Review [J]. Solar Energy Materials and Solar Cells, 2005, 86(4): 451-483.
  • 4A1-Amri F, Mallick T K. Alleviating Operating Temper- ature of Concentration Solar Cell by Air Active Cooling and Surface Radiation [J]. Applied Thermal Engineering, 2013, 59(1): 348-354.
  • 5Vincenzi D, Bizzi F, Stefancich M, et al. Micromachined Silicon Heat Exchanger for Water Cooling of Concentrator Solar Cells [C]// Conference Record, PV in Europe Con- ference and Exhibition From PV Technology to Energy Solutions, 2002:7-11.
  • 6Escher W, Michel B, Poulikakos D. Efficiency of Opti- mized Bifurcating Tree-Like and Parallel Microchannel Networks in the Cooling of Electronics [J]. International Journal of Heat and Mass Transfer, 2009, 52(5): 1421- 1430.
  • 7Gianchandani Y, Tabata O, Zappe H. Comprehensive Microsystems, Three-Volume Set [M]. Oxford: Elsevier, 2007:499- 550.
  • 8Karathanassis I K, Papanicolaou E, Belessiotis V, et al. Multi-Objective Design Optimization of a Micro Heat Sink for Concentrating Photovoltaic/Thermal (CPVT) Systems Using a Genetic Algorithm [J]. Applied Thermal Engineering, 2013, 59(1): 733- 744.

二级参考文献13

  • 1王建军.太阳能光伏发电应用中的温度影响[J].青海师范大学学报(自然科学版),2005,21(1):28-30. 被引量:32
  • 2Hein M, Dimroth F, Siefer G, et al. Characterisation of a 300X photovoltaic concentrator system with one-axis tracking [ J ]. Solar Energy Materials & Solar Cells, 2003, 75 ( 1 ) : 277-283.
  • 3Andreev V M, Grilikhes V A, Khvostikov V P, et al. Concentrator PV modules and solar cells for TPV systems [J]. Solar Energy Material & Solar Cells, 2004, 84( 1- 4) : 3-17.
  • 4Letay G, Bett A W. EtaOpt-A program for calculating limiting efficiency and optimum band gap structure for multiband gap solar cells and TPV cells[A]. 17th European Pho- tovoltaic Solar Energy Conference[C], Munich, 2002.
  • 5Sewang Y, Garboushian V. Reduced temperature dependence of high-concentration photovohaic solar cell open circuit voltage (Voc) at high concentration levels [ EB/OL ]. http:// amonix. com/technical _ papers/\ 1994/Reduced% 20Temperature% 20coefficient% 20Sewang% 20Yoon. pdf, 1994.
  • 6Nishioka K, Takamoto T, Agui T, et al. Evaluation of temperature characteristics of high efficiency InGaP/ InGaAs/Ge triple junction solar cells under concentration [J]. Solar Energy Materials & Solar Cells, 2005, 85 ( 3 ) : 429-436.
  • 7Cotal H, Sherif R. Temperature dependence of the I-V parameters from triple junction GalnP/InGaAs/Ge con- centrator solar cells [ A ]. Proceedings of IEEE Fourth World Conference on Photovoltaic Energy Conversion [C], Waikoloa, HI, 2006, 845-848.
  • 8(澳)伟纳姆[等编],狄大卫[等译].应用光伏学[M].上海:上海交通大学出版社,2008.
  • 9Nishioka K, Takamoto T, Agui T, et al. Annum output estimation of concentrator photovoltaic systems using high- efficiency InGaP/InGaAs/Ge triple junction solar cells based on experimental solar cell's characteristics and field-test meteorological data [ J ]. Solar Energy Materials & Solar Cells, 2006, 90(1): 57-67.
  • 10Kinsey G S, Hebert P, Barbour K E, et al. Concentrator multi-junction solar cell characteristics under variable intensity and temperature [ J ]. Progress in Photovoltaics: Research and Applications, 2009, 16 (6) : 503-508.

共引文献7

同被引文献8

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部