期刊文献+

超疏水表面膜态池沸腾传热实验研究 被引量:5

An Experimental Study of Pool Film Boiling Heat Transfer on Superhydrophobic Surfaces
原文传递
导出
摘要 通过纳米颗粒沉积法在不锈钢球上制备了静态接触角大于160°的超疏水表面,并采用淬火法对该不锈钢球在过冷度为0℃~25℃的去离子水中的瞬态池沸腾传热过程进行了实验研究。结果表明,由于表面的超疏水特性,整个瞬态沸腾过程直至极低表面过热度时始终处于膜态沸腾状态。不锈钢球的冷却速率随着过冷度的增大而提高,其膜态沸腾的热流密度和平均努塞尔数也随着过冷度的增加而近似呈线性增长的趋势。对汽膜演化过程的可视化观察发现,在过冷度较大时蒸汽产生量减少,导致汽膜层扰动减弱、汽液相界面趋于平稳。 Superhydrophobic surfaces with a static contact angle greater than 160° were prepared on stainless steel spheres using the nanoparticle deposition method.The transient pool boiling heat transfer of water on the modified spheres was investigated experimentally via the quenching technique for the subcooling degree varying from 0℃ to 25℃.It was shown that the entire course of the transient boiling processes is within the film boiling regime until a very low wall superheat due to the superhydrophobicity of the surfaces.As the subcooling degree is increased,the cooling rate of the spheres speeds up and the film boiling heat flux and average Nusselt number increase almost linearly.Based on the visualized observation on the evolution of the vapor film,it was also found that the vapor generation rate decreases upon increase of the subcooling degree,leading to deteriorated disturbance within the vapor film and stabilized vapor-liquid interface.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第8期1769-1773,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51206142) 中央高校基本科研业务费专项资金(No.2014QNA4009)
关键词 超疏水表面 膜态沸腾 池沸腾 过冷度 淬火 superhydrophobic surface film boiling pool boiling subcooling degree quenching
  • 相关文献

参考文献13

  • 1Quere D. Leidenfrost Dynmnics [J]. Ammal Review of Fhfid Mechanics, 2013, 45:197-215.
  • 2Takata Y, Hidaka S, Cao J M Nakanmra T, et al. Etfect of Surface Wettability on Boiling and Evaporation [J]. En- ergy, 2005, 30(2-4): 209~220.
  • 3Cassie A B D, Baxter S. Wettability of Porous Surfaces [J]. Transactions of the Faraday Society, 1944, 40:546 551.
  • 4Shirtcakiffe N J, ~vlchale G, At.herton S, et al. An Int.ro- duction to Superhydrophobicity [J]. Advances in Colloid and Interface Science, 2010, 161(1/2): 124 138.
  • 5Ma M L, Hill R M. Superhydrophobic Surfaces[J]. Cur- rent Opinion in Colloid and Interface Science, 2006, 11(4): 193 202.
  • 6Nakajima A, Hashimoto K, Vqat~tnabe T. Transpm'ent Su- perhydrophobic Thin Fihns With Self-Cleaning Properties [J]. Langmuir, 2000, 16(17): 7044 4047.
  • 7Takata Y, Hidaka S, Uraguchi T. Boiling Feature on a Super-Water-Repellent Surface [J]. Heat Transfer Engi- neering, 2006, 27(8): 25 30.
  • 8陈粤,刘俊威,莫冬传,吕树申.超疏水纳米结构表面池沸腾特性[J].工程热物理学报,2011,32(4):634-636. 被引量:11
  • 9WANG Xinwei, ZHAO Siwei, WANG Hao, et al. Bubble Formation on Superhydrophobic-IVlicropatterned Copper Surfaces [J]. Applied Thermal Engineering, 2012, 35:112 119.
  • 10WANG Xinwei, SONG Yongxin, "WANG Hao. Observa- tion of Nucleate Boiling on a Fine Copper Wire V~ith Su- perhydrophobic Mieropatterns [J]. China Physics Letters, 2012, 29(11): 114702.

二级参考文献5

  • 1江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005,23(2):4-8. 被引量:108
  • 2Takata Y, Hidaka S, Cao J M, et al. Effect of Surface Wettability on Boiling and Evaporation [J]. Energy, 2005, 30(2-4): 209-220.
  • 3Phan H T, Caney N, Marty P, et al. Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism [J]. Int. J. Heat Mass Tram, 2009, 52(23/24): 5459-5471.
  • 4Chen R, Lu M C, Srinivasan V, et al. Nanowires for Enhanced Boiling Heat Transfer [J]. Nano Lett., 2009, 9(2): 548-553.
  • 5Cassie A B D, Baxter S. Wettability of Porous Surfaces [J]. Trans. Faraday Soc., 1944, 40:546-551.

共引文献10

同被引文献49

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部