期刊文献+

Ga(OTf)_3催化的3-羟基氧化吲哚与TMSN_3的取代反应研究 被引量:1

Ga(OTf)_3 Catalyzed Highly Efficient Substitution Reaction of 3-Hydroxyoxindoles Using TMSN_3
原文传递
导出
摘要 研究实现了首例3-羟基氧化吲哚1与TMSN3的取代反应,为胺基季碳氧化吲哚的合成提供了一种新方法.在使用Ga(OTf)3作为催化剂和乙腈作为溶剂的条件下,一系列具有不同取代基的3-羟基氧化吲哚均可与TMSN3高效地反应生成相应的3-叠氮基取代的季碳氧化吲哚,且催化剂用量可降低到1 mol%.产物可通过催化氢化方便地转化成相应的胺基季碳氧化吲哚. We report a highly efficient substitution reaction of 3-hydroxyoxindoles 1 using TMSN3 to furnish 3-substituted 3-azidooxindoles as the precursor of quaternary 3-aminooxindoles. Ga(OTf)(3) is found to be the most efficient Lewis acid for this reaction, and catalyst loading could be lowered down to 1.0 mol%. Accordingly, under an nitrogen atmosphere, to a 10 mL Schlenk tube are successively added Ga(OTf)(3) (0.05 mmol, 25.8 mg), 3-hydroxyoxindoles 1 (0.5 mmol) and 2.5 mL of acetonitrile, followed by the addition of TMSN3 (1.5 mmol, 207 mu L). The resulting mixture is stirred at 25. till the full consumption of the 3-hydroxyoxindoles, monitored by TLC analysis. After the solvent is removed under reduced pressure, the residue is directly subjected to column chromatography, using an eluent of petroleum ether/ethyl acetate (10/1, V/V) as the eluent, to afford the desired products 3. Under this condition, a variety of differently substituted 3-aryl 3-hydroxyoxindoles 1a similar to 1m work well with TMSN3 to provide the corresponding 3-aryl 3-azidooxindoles 3a similar to 3m in good to excellent yield. 3-Methyl 3-hydroxyoxindoles 1n similar to 1o also react with TMSN3 to give the desired product 3n similar to 3o in good yield. But 3-allyl 3-hydroxyoxindole 1p reacts with TMSN3 poorly under this condition, affording product 3p in only 27% yield. These results indicate that this method has certain universality, but the reaction is influenced by the substituents to some extent. The reaction could be run on a gram-scale, as evidenced by the reaction of 3-hydroxyoxindole 1a and TMSN3 on a 6.0 mmol scale with 1.0 mol% Ga(OTf)(3) at 60 degrees C, giving 3-phenyl 3-azidooxindole 3a in 89% yield (1.41 gram). The product 3a can be converted to quaternary 3-aminooxindoles 4 in 60% yield at 50 degrees C by Pd-catalyzed hydrogenation. To understand the reaction mechanism, the optically active 3-allyl 3-hydroxyoxindole 1p (84% ee) is chosen to react with TMSN3 under the standard condition, which affords product 3p in racemic form. This result provides strong evidence that a prochiral intermediate is involved in the reaction. We tend to believe that the reaction is initiated by the dehydration of 3-hydroxyoxindole 1p to generate a reactive benzylic cation which will react with TMSN3 to give the desired product 3p.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2015年第7期685-689,共5页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.21172075 21222204)资助~~
关键词 Ga(OTf)3 取代反应 3-羟基氧化吲哚 TMSN3 胺基季碳氧化吲哚 Ga(OTf)3 substitution reaction 3-hydroxyoxindoles TMSN3 quaternary aminooxindoles
  • 相关文献

参考文献3

二级参考文献134

  • 1耿丽君,李记太,王书香.研磨法在固相有机合成中的应用[J].有机化学,2005,25(5):608-613. 被引量:13
  • 2For reviews, see: (a) Das, J. P.; Marek, 1. Chem. Commun. 2011, 47, 4593; (b) Hawner, C.; Alexakis, A. Chem. Commun. 2010, 46, 7295; (c) Bella, M.; Gasperi, T. Synthesis 2009, 1583; (d) Cozzi, E G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 5969.
  • 3For selected examples of asymmetric construction of spirocyclic 2-oxindoles, see: (a) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396; (b) Hojo, D.; Noguchi, K.; Hi- rano, M.; Tanaka, K. Angew. Chem. Int. Ed. 2008, 47, 5820; (c) Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 13819; (d) Bencivenni, G.; Wu, L.-Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M. P.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2009, 48, 7200; (e) Jiang, K.; Jia, Z.-J.; Chen, S.; Wu, L.; Chert, Y.-C. Chem. Eur. J. 2010, 16, 2852; (f) Jiang, K.; Jia, Z.-J.; Yin, X.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 2766; (g) Antonchick, A. P.; Gerding-Reimers, C.; Ca- tarinella, M.; Schtlrmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2010, 2, 735; (h) Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A. Chem. Eur J.. 2010, 16, 12541; (i) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J Am. Chem. Soc. 2010, 132, 15328; (j) Chen, W.-B.; Wu, Z.-J.; Pei, Q.-L.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2010, 12,3132; (k) Zhong, F.; Han, X.; Wang, Y.; Lu, ~. Angew. Chem. lnt. Ed. 2011, 50, 7837.
  • 4For selected examples, see: (a) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sedeoka, M. J. Am. Chem. Soc. 2005, 127, 10164; (b) Ishimam, T.; Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura, S.; Tom, T.; Shiro, M. Angew. Chem. Ed. Int. 2008, 47, 4157; (c) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Tom, T.; Kane- masa, S. d. Am. Chem. Soc. 2006, 128, 16488; (d) Shaw, S. A.; Ale- man, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925; (e) Ogawa, S.; Shibata, N.; Inagaki, J.; Naka- mura, S.; Tom, T.; Shiro, M. Angew. Chem. Ed. Int. 2007, 46, 8666; (f) Trost, B. M.; Zhang, Y. J.. Am. Chem. Soc. 2007, 129, 14548; (g) Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y.-C. Org. Lett. 2008, 10, 3583; (h) Jiang, K.; Peng, J.; Cui, H.-L; Chen, Y.-C. Chem. Commun. 2009, 3955; (i) Galzerano, E; Bencivenni, G; Pesciaioli, F.; Mazzanti, A.; Giannichi, B.; Sambri, L.; Bartoli, G.; Melchiorre, P. Chem. Eur. J. 2009, 15, 7846; (j) Kato, Y.; Furutachi, M.; Chen, Z.; Mitsunuma, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 9168; (k) Cheng, L.; Liu, L.; Wang, D.; Chen, Y.-J. Org. Left. 2009, 11, 3874; (1) He, R.; Shirakawa, S.; Maruoka, K. d. Am. Chem. Soc. 2009, 131, 16620; (m) Bui, T.; Candeias, N. R.; Barbas, C. F. III. J. Am. Chem. Soc. 2010, 132, 5574.
  • 5, _ w, For selected examples, see: (a) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sedeoka, M. J. Am. Chem. Soc. 2005, 127, 10164; (b) Ishimam, T.; Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura, S.; Tom, T.; Shiro, M. Angew. Chem. Ed. Int. 2008, 47, 4157; (c) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Tom, T.; Kane- masa, S. d. Am. Chem. Soc. 2006, 128, 16488; (d) Shaw, S. A.; Ale- man, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925; (e) Ogawa, S.; Shibata, N.; Inagaki, J.; Naka- mura, S.; Tom, T.; Shiro, M. Angew. Chem. Ed. Int. 2007, 46, 8666; (f) Trost, B. M.; Zhang, Y. J.. Am. Chem. Soc. 2007, 129, 14548; (g) Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y.-C. Org. Lett. 2008, 10, 3583; (h) Jiang, K.; Peng, J.; Cui, H.-L; Chen, Y.-C. Chem. Commun. 2009, 3955; (i) Galzerano, E; Bencivenni, G; Pesciaioli, E; Mazzanti, A.; Giannichi, B.; Sambri, L.; Bartoli, G.; Melchiorre, P. Chem. Eur. J. 2009, 15, 7846; (j) Kato, Y.; Furutachi, M.; Chert, Z.; Mitsunuma, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 9168; (k) Cheng, L.; Liu, L.; Wang, D.; Chen, Y.-J. Org. Left. 2009, 11, 3874; (1) He, R.; Shirakawa, S.; Maruoka, K. d. Am. Chem. Soc. 2009, 131, 16620; (m) Bui, T.; Candeias, N. R.; Barbas, C. F. III. J. Am. Chem. Soc. 2010. 132. 5574.
  • 6(a) Waldrnann, H.; Khedkar, V.; Dtickert, H.; Schiirmann, M.; Oppel, I. M.; Kumar, K. Angew. Chem. lnt. Ed. 2008, 47, 6869; (b) for a re- view, see: Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem. lnt. Ed. 2006, 45, 7496.
  • 7For selected examples of organocatalytic asymmetric allylic alkyla- tion of MBH derivatives of aldehydes, see: (a) Cui, H.-L.; Peng, J.;Feng, X.; Du, W.; Jiang, K.; Chen, Y.-C. Chem. Fur. J. 2009, 15, 1574; (b) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int. Ed. 2009, 48, 5737; (c) Huang, J.- R.; Cui, H.-L.; Lei, J.; Sun, X.-H.; Chen, Y.-C. Chem. Commun. 2011, 47, 4784; (d) van Steenis, D. J. V. C.; Marcelli, T.; Lutz, M.; Spek, A. L.; van Maarseveen, A. L. J. H.; Hiemstra, H. Ad~. Synth. Catal. 2007, 349, 281; (e) Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am. Chem. Soc. 2008, 130, 7202; (f) Ma, Ct-N.; Cao, S.-H.; Shi, M. Tetrahedron: Asymmetry 2009, 20, 1086; (g) Sun, W.; Hong, L.; Liu, C.; Wang, R. Org. Left. 2010, 12, 3914; (h) Yang, W.; Wei, X.; Pan, Y.; Lee, R.; Zhu, B.; Liu, H.; Yan, L; Huang, K.-W.; Jiang, Z.; Tan, C.-H. Chem. Eur. J. 2011, 17, 8066; (i) Lin, A.; Mao, H.; Zhu, X.; Ge, H.; Tan, R.; Zhu, C.; Cheng, Y. Chem. Eur. J. 2011, 17, 13676; (h) For a review, see: Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101.
  • 8Xiong, X.-E; Zhang, H.; Peng, J.; Chen, Y.-C. Chem. Eur. J. 2011, 17, 2358.
  • 9CCDC-895875 (41) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cir.
  • 10(a) (~ava, M. P.; Watanabe, Y.; Bessho, K. J. Org. Chem. 1968, 33, 3350; (b) Chen, Z.-C.; Fan, J.-F.; Kende, A. S. J. Org. Chem. 2004, 69, 79.

共引文献7

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部