期刊文献+

基于多重聚类的网络攻击检测方法研究 被引量:2

Research on Network Attack Detection Approach Based on Multi-clustering
下载PDF
导出
摘要 提出一种基于多重聚类的网络攻击检测模型(Multi-clustering based network attack detection model,MBNADM).首先,采用改进空间聚类算法(Improved spatial clustering,ISC)进行空间聚类;其次,采用改进密度聚类算法(Improved density based clustering,IDBC)对空间数据集进行细粒度的二次聚合分类并对k值进行设定;最后,采用改进证据累积聚类算法(Improved evidence accumulation clustering,IEAC)计算各个孤立点与类簇质心的相异距离值,运用矩阵聚类算法计算检测阈值并判定网络中的攻击行为.通过基于KDD99数据集的攻击检测实验和与不同方法的检测对比实验证明了MBNADM具有较高的检测率和较低的误报率. This paper presents a new multi-clustering based network attack detection model(MBNADM).Firstly,the improved spatial clustering(ISC)algorithm was designed to clustering subspace.Secondly,the improved density based clustering(IDBC)algorithm was used to complete the fine-grained aggregation operation on the spatial data sets and the k value setting.Finally,the distinct distance values among each isolated point(network attack)and clustered centroid were calculated with the improved evidence accumulation clustering(IEAC)algorithm,then the matrix clustering algorithm was used to calculate the detection threshold and consequently the network attacks in network behaviors were determined.The attack detection experiments on KDD99 dataset and the detection comparison experiment of different detection methods demonstrate that the MBNADM method has a high detection rate and low false positive rate.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第8期24-29,34,共7页 Microelectronics & Computer
基金 国家科技重大专项(2012ZX03002002) 国家自然科学基金(60776807 61179045) 国家"八六三"计划重点课题(2006AA12A106) 天津市科技计划重点项目(09JCZDJC16800) 中国民航科技基金(MHRD201009 MHRD201205)
关键词 网络攻击 检测 聚类 证据累积 空间 network attack detection clustering evidence accumulate space
  • 相关文献

参考文献6

  • 1Premar L, Kanan A. An intrusion detection systembased on multiple level hybrid using enhanced[C]//IEEE international conference on signal, communica-tions and networking, Switzerland.2010 : 75-79.
  • 2Haqi U,Ali S,Khan H, et al. What is the impact ofP2P traffic on anomaly detection[C]//The 13th Inter-national Symposium on Recent Advances in IntrusionDetection. Berlin Heidelberg,Springer,2010:l-17.
  • 3Luo Song, Marin G. Network traffic anomaly detectionthrough correlation integrals [J]. ACM SIGCOMM,2012,42(4):111-112.
  • 4Spathoulasg P,Katsikas S K. Using a fuzzy inferencesystem to reduce false positives in intrusion detection[C]//The 16th International Conference on Signalsand Image Processing. USA, Phoenix,2009 : 1-4.
  • 5Kinda,Stoecklin M P. Histogram-based traffic anomalydetection[J]. IEEE Transactions on Network and Serv-ice Management,2009,6(2) : 110-121.
  • 6Mit Lincoln Laboratory. 2000 DARPA intrusion de-tection scenario specific data sets [EB/OL]. [2013-05-21]. http://www. 11. mit. edu/mission/communica-tions/ cyber/CSTcorpora/ideval/data/2000data. html.

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部