期刊文献+

SAR与全色图像快速配准算法研究 被引量:1

A Fast Registration Algorithm of Sar and Panchromatic Images
下载PDF
导出
摘要 针对SAR和全色图像配准算法中,数据计算量大、配准时间长的问题,在Powell算法的基础上,提出一种并行优化方法,加快配准速度.引入交叉累积分布熵作为图像匹配测度的基础上,利用生存函数代替密度函数,统计大于某一灰度值的所有直方图信息,保持局部区域灰度信息的连续性,有效改善由噪声和计算误差引起的配准精度的损失.Powell算法可以将求解最优CCRE多参数极值的问题简化为一维极值问题,减少配准过程中迭代的次数,缩短配准时间.为了更快地完成配准,将串行配准算法中大量数据无关的计算部分,分配给多个线程执行,使大块的数据计算处理并行化,从而加快处理速度.实验表明该方法有较好的加速效果. On the basis of Powell algorithm,aparallel optimization is proposed to reduce the amount of calculation and operation time in SAR and panchromatic image registration algorithms.The paper introduces CCRE(crossing cumulative residual entropy)as measurements of image registration and density functions are replaced by survival functions to calculate the histogram information greater than a specified threshold,and CCRE can effectively improve registration accuracy loss caused by the noise and calculation errors,compared with selecting mutual information.Powell multi-directional algorithm can simplify the multi-parameter extreme-value problem of solving optimal CCRE to one-dimensional extreme-value problem,achieving the purpose of reducing iteration number and shorten registration time.In order to make the registration algorithm faster,aparallel algorithm that assigns amount of independent date computing work to multiple threads is proposed,so that large chunks of data can be processed in parallel,accelerating the processing speed.Experiment shows that this method has well acceleration effect.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第8期48-53,共6页 Microelectronics & Computer
基金 国家自然科学基金(61371143) 国家科技支撑计划(2012BAH04F00) 北京市自然科学基金(4132026) 北京市优秀人才培养资助项目(2013D005002000002) 北方工业大学研究生课程群建设项目 北京市教委数字内容标准及智能信息处理平台项目(PXM2013_014212_000120) 北京市教委数据采集与可视化处理平台项目(PXM2014_014212_000017) 2014研究生创新平台建设项目
关键词 交叉累积剩余熵 遥感图像 配准 POWELL算法 并行优化 cross cumulative residual entropy(CCRE) remote sensing image registration powell algorithm parallel optimization
  • 相关文献

参考文献6

  • 1王乘,蒋少华.多源图像处理关键技术研究[D].武汉:华中科技大学,2011.
  • 2Fei Wang, Baba C Vemuri. Non-Rigid multi-modalimage registration using cross-cumulative residual en-tropy[J]. International Journal of Computer Vision,2007,74(2):201-215.
  • 3Thevenaz P, Unser M. Optimization of mutual infor-mation for multi-resolution image registration [J].IEEE Transactions on Image Processing, 2000,9(12):2083-2099.
  • 4李伟,何鹏举,杨恒,陈明.遗传算法对Powell图像配准方法的改进[J].计算机工程与应用,2012,48(20):1-5. 被引量:3
  • 5Flynn M J. Some computer organizations and their ef-fective [J]. IEEE Trans Computers, 1972,21 ( 9 ):948-960.
  • 6宋君强,卢风顺.面向CPU—GPU异构体系结构的并行计算关键技术研究[D].长沙:国防科技大学,2012.

二级参考文献7

  • 1梅跃松,杨树兴,莫波.一种基于新的相似性测度的自动图像配准算法[J].仪器仪表学报,2007,28(S1):336-339. 被引量:3
  • 2彭景林,章兢,李树涛.基于改进PV插值和混合优化算法的医学图像配准[J].电子学报,2006,34(5):962-965. 被引量:13
  • 3Maes F,Collinon A,Vandermeulen D,et al.Multimodality image registration by maximization of mutual inforrna- tion[J].IEEE Transactions on Medical Imaging, 1997, 16 (2):187-198.
  • 4Tsao J.Interpolation artifacts in multimodality image reg- istration based on maximization of mutual information[J]. IEEE Transactions on Medical lmaging, 2003, 22 (7) 854-864.
  • 5Jim J X, Pan H, Liang Z.Further analysis of interpolation effects in mutual information-based image registration[J]. IEEE Transactions on Medical Imaging, 2003, 22 (9): 1131-1140.
  • 6Studholme C,Hill D L G,Hawkes D J.An overlap in- variant entropy measures of 3D medical image align- ment[J].Pattern Recognition, 1999,32 ( 1 ) : 71-86.
  • 7Maes F, Vandermeulen D, Suetens RComparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual informa- tion[J].Medical Image Analysis, 1999,3 ( 4 ) : 373-386.

共引文献2

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部