期刊文献+

一种用于支持向量回归的动态工作集选择方法

A Method of Dynamic Working Set Selection for Support Vector Regression
下载PDF
导出
摘要 在航天器控制计算机的软硬件协同设计过程中,功耗建模是一个必不可少的步骤.基于工作集选择的支持向量回归方法是将功耗经验数据训练为功耗模型的有效手段.现有的工作集选择方法利用的是固定的一阶或二阶信息,没有考虑回归参数的影响,导致收敛时间较长.针对这一不足,提出了根据回归参数调整工作集选择策略的动态工作集选择方法 DWSS,减少了算法收敛的迭代次数.在数值试验部分,对此方法进行了验证,结果表明新的方法具有更快的收敛速度. In the Hardware/Software Co-design process of the control computer on a spacecraft,power modeling is an essential step.The Support Vector Regression(SVR)algorithm based on working set selection(WSS)is an effective method to resolve this problem.Existing WSS methods using fixed first order or second order information regardless of the influence of regression parameters lead to a long iterative time.To break through the limit of these methods,in this paper,a new WSS method named DWSS is proposed.Numerical experiments show that DWSS is faster than existing methods.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第8期72-76,81,共6页 Microelectronics & Computer
关键词 软硬件协同设计 功耗建模 支持向量回归 序贯最小优化 工作集选择 hardware/software co-design power modeling SVR sequential minimal optimization WSS
  • 相关文献

参考文献10

  • 1Smith C U,Frank G A. Cuardrado J L. An architec-ture design and assessment system for software/ Hard-ware Codesign [C]//DAC,85 Proceedings of the 22ndACM/IEEE Design Automation Conference. NJ,USA,1985.
  • 2Olivier Bousquet,Stephane Boucheron, Gabor Lugosi.Introduction to statistical learning theory [J]. MachineLearning,2003(LNAI 3176) : 169-207.
  • 3Alex J Smola,Bernhard Scholkopf. A tutorial on sup-port vector regression [J]. Statistics and Computing,2004,14(3):199-222.
  • 4徐海祥,曹万华,陈炜,郭丽艳.基于支持向量机方法的多目标图像分割[J].微电子学与计算机,2009,26(4):5-10. 被引量:4
  • 5John C Platt. Sequential minimal optimization: a fastalgorithm for training support vector machines [R].Research Technical Report MSR-TR-98-14, Mi-crosoft, 1998.
  • 6Keerthi S S,Shevade S K, Bhattacharyya C,et al. Im-provement to platt's SMO algorithm for SVM classifierdesign [J]. Neural Computation, 2001,13 (3):637-649.
  • 7Chang Chihchung, Lin Chihjen. Libsvm: a library forsupport vector machines [J], ACM Transaction on In-telligent Systems and Technology,2011,2(3) :1-27.
  • 8Osuna E, Freund R,Girosi F. An improved trainingalgorithm for support vector machines [C]//NeuralNetworks for Signal Processing Vll-Proceedings of1997 IEEE Workshop. New York,USA, 1997.
  • 9Con Hush, Clint ScoveL Polynomial-time decomposi-tion algorithms for support vector machines [J]. Ma-chine Learning, 2003,51(1) :51-71.
  • 10Singh C. Optimality conditions in multi-objective differ-ential programming[J ]. Journal of Optimization Theoryand Application, 1987,53(1) : 115-123.

二级参考文献26

  • 1岳振军,邱望成,刘春林.一种自适应的多目标图像分割方法[J].中国图象图形学报(A辑),2004,9(6):674-678. 被引量:27
  • 2徐海祥,朱光喜,张翔,田金文,彭复员.基于改进的一对一支持向量机方法的多目标图像分割[J].微电子学与计算机,2005,22(12):51-54. 被引量:4
  • 3Yan C, Sang N, Zhang T. Local entropy- based transition region extraction and thresholding[J]. Patter Recognition Letters, 2003(24) :2935 - 2941.
  • 4Zhang T, Peng J, Li Z. An adaptive image segmentation method with visual nonlinearity characteristics [J ]. IEEE Transactions on Systems, Man and Cybernetics - part B: Cybernetics, 1996,26(4) :619 - 627.
  • 5Xue X. A new method of SAR image segmentation based on neural network[C]//Fifth International Conference on Computational Intelligence and Multimedia Applications. China:Xi'an, 2003:149 153.
  • 6Ziemke T. Radar image segmentation using recurrent artificial neural networks [ J ]. Pattern Recognition Letters,1996(17):319-334.
  • 7Kuntimad G, Ranganath H S. Perfect image segmentation using pulse coupled neural networks [ J ]. IEEE Transactions on Neural Networks, 1999,10(3) :591 - 598.
  • 8Vapnik V. The nature of statistics learning theory[M]. New York: Springer Verlag, 1995.
  • 9Vapnik V. Statistical learning theory[M]. New York: J. Wiley, 1998.
  • 10Guo G, Li S Z, Chan K L. Support vector machines for face recognition[J]. Image and Vision Computing, 2001 (19) :631 - 638.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部