期刊文献+

微通道内气-液弹状流动及传质特性研究进展 被引量:14

Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels
下载PDF
导出
摘要 气-液弹状流,又称Taylor流,是一种以长气泡和液弹交替形式流动的流动形态。微通道内气-液弹状流因其气泡与液弹尺寸分布均一、停留时间分布窄、径向混合强等优点,是一种适于强化气-液反应的理想流型。本文首先介绍了微通道内气泡的生成机理、气泡和液弹长度,以及气泡生成阶段的传质特征。其次系统综述了主通道中弹状流动及传质过程的研究进展,包括气泡形状与液膜厚度、液弹内循环和泄漏流特征、气-液传质系数的测量与预测,以及物理与化学吸收过程中的传质特性等方面内容。最后阐述了当前研究的不足并展望了气-液弹状流的研究方向。 Gas-liquid slug flow (also termed as Taylor flow) is a flow pattern characterized by the alternate movement of elongated bubbles and liquid slugs. Gas-liquid slug flow operation in microchannels has been found important implications in the enhancement of gas-liquid reactions due to its advantages such as easy control, uniform bubble and slug size, narrowed residence time distribution as well as enhanced radial mixing. This review presents the basic conceptions and recent research progress on flow and mass transfer characteristics during the gas-liquid slug flow in microchannels. The gas bubble formation mechanisms, the corresponding bubble and liquid lengths, and mass transfer during bubble formation are summarized. For regular slug flow in the main section of microchannels, several important aspects are addressed including bubble cross-sectional shape and liquid film profile, internal liquid recirculation and leakage flow through the gutters, gas-liquid mass transfer coefficients and coupling phenomena between flow and mass transfer in physical and chemical absorption processes. Finally, an outlook is given for future research directions in this field.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第8期2759-2766,共8页 CIESC Journal
基金 国家自然科学基金项目(21225627 21376234)~~
关键词 多相流 微通道 微反应器 气泡 传质 multiphase flow microchannel microreactor bubble mass transfer
  • 相关文献

参考文献44

  • 1Inoue T, Schmidt M A, Jensen K F. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen [J]. Ind. Eng. Chem. Res., 2007, 46(4): 1153-1160.
  • 2Zhao Y C, Yao C Q, Chen G W, Yuan Q. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor [J]. Green Chem., 2013, 15(2): 446-452.
  • 3Yue J, Chen G W, Yuan Q, Luo L A, Gonthier Y. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel [J]. Chem. Eng. Sci., 2007, 62(7): 2096-2108.
  • 4de Mas N, Gunther A, Schmidt M A, Jensen K F. Microfabricated multiphase reactors for the selective direct fluorination of aromatics [J]. Ind. Eng. Chem. Res., 2003, 42(4): 698-710.
  • 5Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q. Novel process windows for enabling, accelerating, and uplifting flow chemistry [J]. ChemSusChem., 2013, 6(5): 746-789.
  • 6Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up [J]. Lab Chip, 2006, 6(3): 437-446.
  • 7Yao C Q, Zhao Y C, Ye C B, Dang M H, Dong Z Y, Chen G W. Characteristics of slug flow with inertial effects in a rectangular microchannel [J]. Chem. Eng. Sci., 2013. 95: 246-256.
  • 8Yao C Q, Dong Z Y, Zhao Y C, Chen G W. The effect of system pressure on gas-liquid slug flow in a microchannel [J]. AIChE Journal, 2014, 60: 1132-1142.
  • 9Xu K, Tostado C P, Xu J H, Lu Y C, Luo G S. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device [J]. Lab Chip, 2014, 14(7): 1357-1366.
  • 10Dietrich N, Poncin S, Midoux N, Li H Z. Bubble formation dynamics in various flow-focusing microdevices [J]. Langmuir, 2008, 24: 13904-13911.

同被引文献100

引证文献14

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部