期刊文献+

冷等离子体诱导生物分子自组装制备生物材料研究进展 被引量:1

Perspective on cold plasma-induced self-assembly biomolecules approach to biomaterials
下载PDF
导出
摘要 生物材料在污水处理、气体检测、储能、光催化等领域展现出良好的应用前景。但传统生物材料制备方法复杂,且使用高毒性有机溶剂。实现简单、绿色的生物材料制备是目前亟需解决的问题。室温下冷等离子体诱导生物分子自组装制备生物材料,不需有机溶剂,不需高温焙烧、H2还原、化学还原和光致还原,实现了生物材料制备过程的简单化、绿色化。通过冷等离子体诱导生物分子自组装已制备出厚度为(1.03±0.14)nm的生物膜以及含有尺寸小于10 nm、分散性极好的金属纳米颗粒的金属/生物复合材料。但相关研究刚起步,许多科学问题仍然未知,特别是冷等离子体诱导生物分子自组装机理需进一步研究。这些科学问题一旦得到完美诠释,必定会实现生物材料的可控、宏量制备。 The biomaterials are promising for water treatment, gas sensor, energy storage and photocatalysis. However, the traditional preparation processes of the biomaterials are complex, and require toxic organic reagents. Simple and green preparation methods for biomaterials are highly desired. The cold plasma-induced self-assembly of biomolecules at room temperature is simple and green, as it does not use organic reagent, and does not require calcinations, H2 reduction, chemical reduction and photoinduced reduction. By using the plasma-induced self-assembly, biofilm with a height of(1.03±0.14)nm and metal/biomaterial composites with highly dispersed metal nanoparticles (〈 10 nm) have been successfully fabricated. However, many fundamental issues about the cold plasma-induced self-assembly, especially its mechanism, are still unsolved. A deep understanding on these problems will allow for controllable and massive syntheses of biomaterials.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第8期2824-2830,共7页 CIESC Journal
基金 国家自然科学基金项目重大研究计划重点支持项目(91334206)~~
关键词 纳米材料 生物膜 冷等离子体 自组装 nanomaterial peptide biofilm cold plasma self-assembly
  • 相关文献

参考文献31

  • 1Berardi S, Drouet S, Francas L, Gimbert-Surinach C, Guttentag M, Richmond C, Stoll T, Llobet A. Molecular artificial photosynthesis [J]. Chemical Society Review, 2014, 43: 7501-7519.
  • 2Qiu K Y, Netravali A N. A review of fabrication and applications of bacterial cellulose based nanocomposites [J]. Polymer Review, 2014, 54: 598-626.
  • 3Assen N, Voll P, Peters M, Bardow A. Life cycle assessment of CO2 capture and utilization: a tutorial review [J]. Chemical Society Review, 2014, 43: 7982-7994.
  • 4Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting[J]. Nature Photonics, 2012, 6: 511-518.
  • 5Lee S H, Kim J H, Park C B. Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis [J]. Chemistry-A European Journal, 2013, 19: 4392-4406.
  • 6Lee H Y, Ryu J, Kim J H, Lee S H, Park C B. Biocatalyzed artificial photosynthesis by hydrogen-terminated silicon nanowires [J]. ChemSusChem, 2012, 5: 2129-2132.
  • 7Kalyanasundaram K, Graetzel M. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage [J]. Current Opinion in Biotechnolog, 2010, 21: 298-310.
  • 8Bryksin A V, Brown A C, Baksh M M, Finn M G, Barker T H. Learning from nature-novel synthetic biology approaches for biomaterial design [J]. Acta Biomaterials, 2014, 10: 1761-1769.
  • 9Pan Y X, Liu C J, Zhang S, Yu Y, Dong M. 2D oriented self-assembly of peptide induced by hydrated electrons [J]. Chemistry-A European Journal, 2012, 18: 14614-14617.
  • 10Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser C A E, Zhang S, Lu J R. Molecular self-assembly and applications of designer peptide amphiphiles [J]. Chemical Society Review, 2010, 39: 3480-3498.

同被引文献62

  • 1王立言.常压室温等离子体对微生物的作用机理及其应用基础研究[D].北京:清华大学,2009.
  • 2ZHANG X, ZHANG X-F, LI H-P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool [J]. Applied Microbiology and Biotechnology, 2014, 98( 12 ): 5387-5396.
  • 3KONG M G, KROESEN G, MORFILL G, et al. Plasma medicine: an introductory review [J]. New Journal of Physics, 2009, 11(11): 115012.
  • 4LAROUSSI M. Low-temperature plasmas for medicine? [J]. Plasma Science, IEEE Transactions on, 2009, 37 (6): 714-725.
  • 5WELTMANN K D, KINDEL E, von WOEDTKE T, et al. Atmospheric-pressure plasma sources: prospective tools for plasma medicine[J]. Pure and Applied Chemistry, 2010, 82 (6): 1223-1237.
  • 6YOUSFI M, MERBAHI N, PATHAK A, et al. Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine [J]. Fundamental & Clinical Pharmacology, 2013, 28 (2): 123-135.
  • 7FRIDMAN G, FRIEDMAN G, GUTSOL A, et al. Applied plasma medicine[J]. Plasma Processes and Polymers, 2008, 5 (6): 503-533.
  • 8张雪.常压室温等离子体(ARTP)的微生物诱变机理研究[D].北京:清华大学,2015.
  • 9FANG M, JIN L, ZHANG C, et al. Rapid mutation of spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes [J]. PLoS ONE, 2013, 8 (10): e77046.
  • 10TAN Y, FANG M, JIN L, et al. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production [J]. Journal of Bioscience and Bioengineering, 2015, 120 (4): 438-443.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部