期刊文献+

发酵粗甘油产乳酸的戊糖乳杆菌代谢进化 被引量:3

Metabolic evolution of Lactobacillus pentosus for lactic acid production from raw glycerol
下载PDF
导出
摘要 以生物柴油产业的副产物粗甘油为底物,可降低乳酸发酵的生产成本。但是,粗甘油发酵生产乳酸存在菌体生长缓慢、菌浓较低、产酸速率和终产物浓度偏低等问题。以实验室筛选的一株戊糖乳杆菌(Lactobacillus pentosus R3-8)为出发菌株进行代谢进化。通过在培养基中添加高浓度的粗甘油和乳酸,分别进行菌株耐底物和产物抑制的代谢进化。用粗甘油驯化的第60代菌株,可耐受130 g·L-1的粗甘油,与出发菌株相比,生长速率提高,且生物量是原始菌株的1.23倍。用乳酸驯化的第50代菌株可耐受20 g·L-1的乳酸,生物量比初始菌株提升了18%。驯化菌株的5 L发酵罐分批发酵结果显示,以粗甘油驯化至60代的菌株的批次发酵水平相对较好,乳酸产量、甘油转化率以及生产强度分别为45.0 g·L-1、0.989 g·g-1和0.47 g·L-1·h-1。以粗甘油驯化至60代的菌株进行补料分批发酵,乳酸终浓度为83.8 g·L-1,比分批发酵提高了近1倍。 High costs are the bottlenecks of traditional lactic acid fermentation process using glucose and starch as raw material. Production of lactic acid from raw glycerol, a byproduct of biodiesel, can significantly decrease the costs of fermentation. Therefore, there is a need to overcome the disadvantages of low cell growth rate, biomass of strains, as well as low productive rate and yield of lactic acid. In this work, metabolic evolution ofLactobacillus pentosus R3-8 screened by our group was carried out by adding high concentration raw glycerol and lactic acid. The 60th generation evolved strain using raw glycerol, tolerated 130 g·L-1 raw glycerol, with 1.23 folds enhancement of biomass. The 50th generation evolved strain using lactic acid can tolerate 20 g·L-1 lactic acid with 18% increase in biomass. The growth curves of 60thgenerationevolved strain using raw glycerol cultivated in 5 L bioreactor indicated that the lactic acid concentration, yield and productivity were 45.0 g·L-1, 0.989 g·g-1 and 0.47 g·L-1·h-1, respectively. Fed-batch cultivation of 60thgenerationevolved strain using raw glycerol achieved 83.8 g·L-1lactic acid, which was two folds of batch cultivation with the same strain.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第8期3195-3203,共9页 CIESC Journal
基金 国家高技术研究发展计划项目(2006AA020102)~~
关键词 代谢进化 乳酸 甘油 发酵 代谢 生化工程 metabolic evolution lactic acid glycerol fermentation metabolism biochemical engineering
  • 相关文献

参考文献21

  • 1Basha S A, Gopal K R, Jebaraj S. A review on biodiesel production, combustion, emissions and performance [J]. Renew Sust. Energ. Rev., 2009, 13: 1628-1634.
  • 2Lin L, Zhou C, Saritporn V, Shen X, et al. Opportunities and challenges for biodiesel fuel [J]. Appl. Energ., 2011, 88: 2020-1031.
  • 3Rasal R M, Janorkar A V, Hirt D E. Poly (lactic acid) modifications [J]. Prog. Polym. Sci., 2010, 35 (3): 338-356.
  • 4Mazumdar S, Clomburg J M, Gonzalez R. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol [J]. Appl. Environ. Microb., 2010, 76 (13): 4327-4336.
  • 5洪安安,程可可,孙燕,陈珍,彭枫,刘灿明,刘德华.代谢甘油高产乳酸的菌种选育及培养基优化[J].微生物学通报,2009,36(8):1195-1199. 被引量:5
  • 6Hong A A, Cheng K K, Peng F, et al. Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid [J]. J.Chem. Technol. Biot., 2009, 84 (10): 1576-1581.
  • 7田康明,周丽,陈献忠,沈微,石贵阳,Suren Singh,路福平,王正祥.利用温度调节实现新型重组菌高效转化甘油为D-乳酸[J].生物工程学报,2013,29(1):111-114. 被引量:6
  • 8Tian Kangming, Chen Xianzhong, Shen Wei, Bernard A Prior, Shi Guiyang, Suren Singh, Wang Zhengxiang. High-efficiency conversion of glycerol to D-lactic acid with metabolically engineered Escherichia coli [J]. Afr. J. Biotec., 2012, 11 (21): 4860-4867.
  • 9Hofvendahl K, Hahn-Hfigerdal B. Factors affecting the fermentative lactic acid production from renewable resources [J]. Enzyme Microb. Tech., 2000, 26 (2): 87-107.
  • 10张学礼.代谢工程发展20年[J].生物工程学报,2009,25(9):1285-1295. 被引量:13

二级参考文献85

  • 1Datta R, Tsai SP, Bonsignore P, et al. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev, 1995, 16(2): 221-231.
  • 2Reddy G, Altaf Md, Naveena B J, et al. Amylolytic bacterial lactic acid fermentation-areview. Biotechnol Advances, 2008, 26(1): 22-34.
  • 3Ramesh MV. A wonder chemical that help make biode-gradable plastic, why India need to milk the full potential of lactic acid. India Mkt Empowering Business, 2001, 4.
  • 4Mirasol F. Lactic acid prices falter as competition toughens. Chemical market reporter, 1999, 3.
  • 5Cameron DC, Altaras NE, Hoffman ML, et al. Metabolic engineering of propanediol pathways. Biotechnol Prog, 1998, 14(1): 116-125.
  • 6Freddy G. Solvay will make epichlorohydrin from glycerol. Industrial Bioprocessing, 2006, 28(3): 8-9.
  • 7Koller M, Bona R, Braunegg G, et al. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacro molecules, 2005, 6(2): 561-565.
  • 8Bai DM, Zhao XM, Li XG, et al. Strain improvement and metabolic flux analysis in the wild-type and a mutant lactobacillus lactis strain for L(+)-lactic acid production. Biotechnol Bioeng, 2004, 88(6): 681-689.
  • 9Cheng KK, Zhang JA, Liu DH, et al. Production of 1, 3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett, 2006, 28: 1817-1821.
  • 10Biebl H. Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies, lnd Microbiol Biotechnol, 2001, 27(1): 18-26.

共引文献21

同被引文献18

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部