期刊文献+

氧化钙-二氧化碳循环系统脱碳的分析研究(英文) 被引量:1

Analytical evaluation of CaO-CO_2 loop for CO_2 removal
下载PDF
导出
摘要 采用燃料氧燃烧直接供热的氧化钙-二氧化碳双床循环系统已经被研究开发,用于从电厂尾气中脱碳。本研究基于实验和化学反应工程原理建立了分析模型,用于系统地研究循环特征,氧化钙活性衰减,燃料及其炉内热利用率的影响。基于模型推导获得了重要参数:最小循环热损失和最小热需求量,以及对应的固体循环比。它们都受供热燃料灰分和含硫量的影响,也受脱碳率的影响。显然最佳固体循环比介于二者之间。另一个重要参数是燃料在炉内的热利用率。高的热利用率不仅降低燃料需求量,降低其灰分和含硫的影响,降低氧的需求量及其辅助功,而且提高蒸汽循环的发电效率。一个发现是热需求量在临界固体循环比接近无穷大,这就限制了固体循环比的可操作范围,以及燃料的灰分和含硫量。建立的分析模型和推导直接提供了这些变量之间的关系和范围。 Post-combustion CO2 removal from flue gas at power plantvia a two-bed CaO-CO2 loop (CaL) with heat provided byin-situ oxy-fuel combustion has been investigated. Based on the principle of chemical reaction engineering, a simple analytical model with one variableN only (solids circulation ratio) has been built and used for analysis of the CaL process systematically, which includes effects from sorbent reactivity, fuel impurity and the utilization of fuel heat to looping. From the model, the minimum heat duty and the looping penalty are obtained. Both of them are impacted by fuel sulfur and ash significantly. The result also indicates that the optimum solids circulation ratioN will be located between the two minimum points. The furnace factor is important, because it can eventually reduce the fuel firing rate, fuel ash and sulfur effect, oxygen requirement and related auxiliary power, and increase steam cycle efficiency. As found, the heat duty approaches to infinite at a critical solids circu-lation ratioNC, which is a constraint to the operableN and the fuel burned. All of the effects are interconnected by the model.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第8期3233-3241,共9页 CIESC Journal
关键词 CO2捕集 钙循环 反应性 模型 CO2 capture calcium looping reactivity modeling
  • 相关文献

参考文献14

  • 1Abanades J, Alvarez D. Conversion limits in the reaction of CO2 with lime [J]. Energy & Fuel, 2003, 17: 308-315.
  • 2Fabrizio Scala. Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification [M]. Amsterdam: Elsevier, 2013.
  • 3Chang M H, Chen W C, Huang C M, Liu W H, Chou Y C, Chang W C, Chen W, Cheng J Y, Huang K E, Hsu H W. Design and experimental testing of 1.9 MWth calcium looping pilot plant//GHGT-12 [C]. Austin, TX, 2014.
  • 4Sakadjian B B, Wang W K, Li S G, Ramkumar S, Gumuluru S, Fan L S, Statnick R M. Sub-pilot demonstration of the CCR process: high temperature CO2 capture sorbents for coal fired power plants//the 34th International Clearwater Conference [C]. Clearwater, FL, 2009.
  • 5Diego M E, Arias B, Grasa G, Abanades J C, Diaz L, Lorenzo M, Sanchez-Biezma A. Cacium looping with enhanced sorbent performance: experimental testing in a large pilot//GHGT-12 [C]. Austin, TX, 2014.
  • 6Dieter H, Beirow M, Schweitzer D, Hawthorne C, Scheffknecht G. Efficiency and flexibility potential for calcium looping CO2 capture//GHGT-12 [C]. Austin, TX, 2014.
  • 7Mantripragada H C, Rubin E S. Calcium looping cycle for CO2 capture: performance, cost and feasibility analysis//GHGT-12 [C]. Austin, TX, 2014.
  • 8Fennell P S, Pacciani R, Dennis J S, Davidson J F, Hayhurst A N. The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand [J]. Energy & Fuels, 2007, 21: 2072-2081.
  • 9Fennell P S, Davidson J F, Dennis J S, Hayhurst A N. Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems [J]. J. Energy Institute, 2007, 80 (2): 116-119.
  • 10Lisbona P, Martinez A, Lara Y, Romeo L M. Integration of carbonate CO2 capture and coal-fired power plants, a comparative study for different sorbents [J]. Energy & Fuels, 2010, 24: 728-736.

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部