期刊文献+

基于麦克风小阵的多噪声环境语音增强算法 被引量:6

Speech enhancement algorithm based on microphone array under multiple noise environments
下载PDF
导出
摘要 针对助听器等设备在非平稳或多种噪声并存环境下使用效果急剧下降的问题,提出一种基于小尺寸麦克风阵的相干滤波广义旁瓣抵消(CF-GSC)语音增强算法。该算法结合麦克风阵采集信号的特点,对各阵元间采集时表现为弱相关的海浪、风扇等近似白噪声,以及采集时表现为强相关的点源信号及其他竞争噪声,分别利用相干滤波和传统广义旁瓣抵消(GSC)结构对弱相关与强相关噪声的良好滤除效果,结合语音活动检测(VAD)在噪声段进行联合处理。仿真实验表明在多类噪声存在环境下,该算法能取得相对改进的通道间相干函数滤波算法及传统广义旁瓣抵消算法2 d B左右的增强效果提升,同时能获得良好的话音可懂度。 In order to get better speech enhancement effect for hearing aids when used in the environment with non- stationary or multiple noise, which will lead a sharp decline effect of user experience, a Coherent Filter Generalized Sidelobe Canceller (CF-GSC) speech enhancement algorithm based on small size microphone array was proposed. Aiming at the weak correlation noise which caused by the waves, fans and other approximate white noise, as well as the strong correlation noise caused by the point or other competitive sources, coherent filtering and traditional Generalized Sidelobe Canceller (GSC) structure were utilized to remove weak correlation and strong correlation noise separately, the Voice Activity Detection (VAD) algorithm was also applied during this process. The simulation results show that the proposed algorithm can obtain enhancement effect by almost 2 dB compared with the improved coherent filter and traditional generalized sidelobe caneeUer method under the environment of a variety of noise, meanwhile, the speech intelligibility also gets obviously improved.
出处 《计算机应用》 CSCD 北大核心 2015年第8期2341-2344,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61461011) 广西自然科学基金资助项目(2012GXNSFAA053232) 桂林电子科技大学研究生科研创新项目(GDYCSZ201456)
关键词 非平稳噪声 麦克风阵列 广义旁瓣抵消 相干滤波 语音增强 non-stationary noise microphone array Generalized Sidelobe Canceller (GSC) coherence filtering speechenhancement
  • 相关文献

参考文献11

  • 1HALLENBECK S, PETROVIC S. Remote microphone hearing in- struments [ EB/OL]. [ 2015- 03-08 ]. http://www, resound, corn/ en-US/-/ media/Images/ReSound/Countries% 20mix/US/Mem- bersPdf/RemoteMicDoc Hallenbeck-Petrovic. ashx?la = en-US.
  • 2SINGH S, TRIPATHY M, ANAND R S. Single channel speech en- hancement for mixed non-stationary noise environments [ C]// Pro- ceedings of the 2014 Advances in Signal Processing and Intelligent Recognition Systems, LNCS 264. Berlin: Springer, 2014: 545- 555.
  • 3LUN D P K, SHEN T-W, HO K C. A novel expectation-maximiza- tion framework for speech enhancement in non-stationary noise envi- ronments [ J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(2) : 335 -346.
  • 4YOUSEFIAN N, LOIZOU P C. A dual-microphone speech enhance- ment algorithm based on the coherence function [ J]. IEEE Transac- tions on Audio, Speech, and Language Processing, 2012, 20(2): 599 - 609.
  • 5NIWA K, HIOKA Y, KOBAYASH1 K. Post-filter design for speech enhancement in various noisy environments [C]// Proceedings of the 2014 14th International Workshop on Acoustic Signal Enhance- ment. Piscataway: IEEE, 2014:35-39.
  • 6ALLEN J B, BERKLEY D A, BLAUERT J. Multimicrophone sig- nal-processing technique to remove room reverberation from speech signals [ J]. The Journal of the Acoustical Society of America, 1977, 62(4): 912-915.
  • 7GHOSH P K, TSIARTAS A, NARAYANAN S. Robust voice activi- ty detection using long-term signal variability [ J]. IEEE Transac- tions on Audio, Speech, and Language Processing, 2011, 19(3) : 600 -613.
  • 8GRIFFITHS L J, JIM C W. An alternative approach to linearly con- strained adaptive beamforming [ J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1) : 27 -34.
  • 9VEGA L R, REY H, BENESTY J, et al. A new robust variable step-size NLMS algorithm [ J]. IEEE Transactions on Signal Pro- cessing, 2008, 56(5) : 1878 - 1893.
  • 10DELLER J R, Jr, PROAKIS J G, HANSEN J H L. Discrete-time processing of speech signals [ M]. Upper Saddle River: Prentice Hall, 2000:127 - 167.

同被引文献25

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部